
Linux c/c 后台开发组建之:高性能阻塞队列
(2015-12-01 06:01:47)
标签:
Linux
c/c
杂谈
分类:
c/c
阻塞队列是后台开发中多线程异步架构的基本数据结构,像python, java 都提供线程安全的阻塞队列,c
可能需要自己实现一个模板。
从性能考虑,自己没有使用STL的queue作为基本数据结构,而是使用循环数组作为基本数据结构,性能应该比queue高,省去了动态内存分配和回收。
确点就是,队列大小不可动态扩展,当时实际开发中,可以通过压力测试和内存的限制,配置合适的队列大小来满足应用需求。
#ifndef BLOCK_QUEUE_H
#define BLOCK_QUEUE_H
#include
#include
#include
#include
using namespace std;
template
class block_queue
{
public:
block_queue(int max_size = 1000)
{
if(max_size <= 0)
{
exit(-1);
}
m_max_size = max_size;
m_array = new T[max_size];
m_size = 0;
m_front = -1;
m_back = -1;
m_mutex = new pthread_mutex_t;
m_cond = new pthread_cond_t;
pthread_mutex_init(m_mutex, NULL);
pthread_cond_init(m_cond, NULL);
}
void clear()
{
pthread_mutex_lock(m_mutex);
m_size = 0;
m_front = -1;
m_back = -1;
pthread_mutex_unlock(m_mutex);
}
~block_queue()
{
pthread_mutex_lock(m_mutex);
if(m_array != NULL)
delete m_array;
pthread_mutex_unlock(m_mutex);
pthread_mutex_destroy(m_mutex);
pthread_cond_destroy(m_cond);
delete m_mutex;
delete m_cond;
}
bool full()const
{
pthread_mutex_lock(m_mutex);
if(m_size >= m_max_size)
{
pthread_mutex_unlock(m_mutex);
return true;
}
pthread_mutex_unlock(m_mutex);
return false;
}
bool empty()const
{
pthread_mutex_lock(m_mutex);
if(0 == m_size)
{
pthread_mutex_unlock(m_mutex);
return true;
}
pthread_mutex_unlock(m_mutex);
return false;
}
bool front(T& value)const
{
pthread_mutex_lock(m_mutex);
if(0 == m_size)
{
pthread_mutex_unlock(m_mutex);
return false;
}
value = m_array[m_front];
pthread_mutex_unlock(m_mutex);
return true;
}
bool back(T& value)const
{
pthread_mutex_lock(m_mutex);
if(0 == m_size)
{
pthread_mutex_unlock(m_mutex);
return false;
}
value = m_array[m_back];
pthread_mutex_unlock(m_mutex);
return true;
}
int size()const
{
int tmp = 0;
pthread_mutex_lock(m_mutex);
tmp = m_size;
pthread_mutex_unlock(m_mutex);
return tmp;
}
int max_size()const
{
int tmp = 0;
pthread_mutex_lock(m_mutex);
tmp = m_max_size;
pthread_mutex_unlock(m_mutex);
return tmp;
}
bool push(const T& item)
{
pthread_mutex_lock(m_mutex);
if(m_size >= m_max_size)
{
pthread_cond_broadcast(m_cond);
pthread_mutex_unlock(m_mutex);
return false;
}
m_back = (m_back 1) % m_max_size;
m_array[m_back] = item;
m_size ;
pthread_cond_broadcast(m_cond);
pthread_mutex_unlock(m_mutex);
return true;
}
bool pop(T& item)
{
pthread_mutex_lock(m_mutex);
while(m_size <= 0)
{
if(0 != pthread_cond_wait(m_cond, m_mutex))
{
pthread_mutex_unlock(m_mutex);
return false;
}
}
m_front = (m_front 1) % m_max_size;
item = m_array[m_front];
m_size--;
pthread_mutex_unlock(m_mutex);
return true;
}
bool pop(T& item, int ms_timeout)
{
struct timespec t = {0,0};
struct timeval now = {0,0};
gettimeofday(&now, NULL);
pthread_mutex_lock(m_mutex);
if(m_size <= 0)
{
t.tv_sec = now.tv_sec ms_timeout/1000;
t.tv_nsec = (ms_timeout % 1000)*1000;
if(0 != pthread_cond_timedwait(m_cond, m_mutex,
&t))
{
pthread_mutex_unlock(m_mutex);
return false;
}
}
if(m_size <= 0)
{
pthread_mutex_unlock(m_mutex);
return false;
}
m_front = (m_front 1) % m_max_size;
item = m_array[m_front];m_size--;
pthread_mutex_unlock(m_mutex);
return true;
}
private:
pthread_mutex_t *m_mutex;
pthread_cond_t *m_cond;
T *m_array;
int m_size;
int m_max_size;
int m_front;
int m_back;
};
#endif
#include
#include"block_queue.h"
using namespace std;
block_queue g_queue(100);
void *p(void *args)
{
sleep(1);
int data = 0;
for(int i = 0; i < 100; i )
{
g_queue.push(data );
}
return NULL;
}
void *c(void* args)
{
while(true)
{
int t = 0;
if(!g_queue.pop(t,1000))
{
cout<
continue;
}
else
{
cout<
}
g_queue.pop(t);
cout<
}
return NULL;
}
int main()
{
pthread_t id;
pthread_create(&id, NULL, p, NULL);
//pthread_create(&id, NULL, p, NULL);
//pthread_create(&id, NULL, c, NULL);
pthread_create(&id, NULL, c, NULL);
for(;;)sleep(1);
return 0;
}
分享:
喜欢
0
赠金笔
加载中,请稍候......
评论加载中,请稍候...
发评论
登录名: 密码: 找回密码 注册记住登录状态
昵 称:
发评论
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。