「机器学习」天池金融风控-贷款违约预测赛题分析

1. 赛题背景

赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款,这是一个典型的分类问题。通过这道赛题来引导大家了解金融风控中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。

比赛地址:https://tianchi.aliyun.com/competition/entrance/531830/introduction

2. 赛题数据

比赛要求参赛选手根据给定的数据集,建立模型,预测金融风险。

赛题以预测金融风险为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。

一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。 Tip:匿名特征,就是未告知数据列所属的性质的特征列。

字段表

FieldDescription
id为贷款清单分配的唯一信用证标识
loanAmnt贷款金额
term贷款期限(year)
interestRate贷款利率
installment分期付款金额
grade贷款等级
subGrade贷款等级之子级
employmentTitle就业职称
employmentLength就业年限(年)
homeOwnership借款人在登记时提供的房屋所有权状况
annualIncome年收入
verificationStatus验证状态
issueDate贷款发放的月份
purpose借款人在贷款申请时的贷款用途类别
postCode借款人在贷款申请中提供的邮政编码的前3位数字
regionCode地区编码
dti债务收入比
delinquency_2years借款人过去2年信用档案中逾期30天以上的违约事件数
ficoRangeLow借款人在贷款发放时的fico所属的下限范围
ficoRangeHigh借款人在贷款发放时的fico所属的上限范围
openAcc借款人信用档案中未结信用额度的数量
pubRec贬损公共记录的数量
pubRecBankruptcies公开记录清除的数量
revolBal信贷周转余额合计
revolUtil循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
totalAcc借款人信用档案中当前的信用额度总数
initialListStatus贷款的初始列表状态
applicationType表明贷款是个人申请还是与两个共同借款人的联合申请
earliesCreditLine借款人最早报告的信用额度开立的月份
title借款人提供的贷款名称
policyCode公开可用的策略_代码=1新产品不公开可用的策略_代码=2
n系列匿名特征匿名特征n0-n14,为一些贷款人行为计数特征的处理

3. 评价指标

竞赛采用AUC作为评价指标。AUC(Area Under Curve)被定义为 ROC曲线下与坐标轴围成的面积。

分类算法常见的评估指标在另一篇文章中有所介绍:

「机器学习」分类算法常见的评估指标

除此之外,对于金融风控预测类常见的评估指标如下:

1、KS(Kolmogorov-Smirnov) KS统计量由两位苏联数学家A.N. Kolmogorov和N.V. Smirnov提出。在风控中,KS常用于评估模型区分度。区分度越大,说明模型的风险排序能力(ranking ability)越强。 K-S曲线与ROC曲线类似,不同在于

  • ROC曲线将真正例率和假正例率作为横纵轴
  • K-S曲线将真正例率和假正例率都作为纵轴,横轴则由选定的阈值来充当。 公式如下: K S = m a x ( T P R − F P R ) KS=max(TPR-FPR)KS=max(TPRFPR) KS不同代表的不同情况,一般情况KS值越大,模型的区分能力越强,但是也不是越大模型效果就越好,如果KS过大,模型可能存在异常,所以当KS值过高可能需要检查模型是否过拟合。以下为KS值对应的模型情况,但此对应不是唯一的,只代表大致趋势。
KS(%)好坏区分能力
20以下不建议采用
20-40较好
41-50良好
51-60很强
61-75非常强
75以上过于高,疑似存在问题

2、ROC

3、AUC

4. 赛题流程

赛题流程

5. 代码示例

本部分为对于数据读取和指标评价的示例。

5.1 数据读取pandas

import pandas as pd
train = pd.read_csv('train.csv')
testA = pd.read_csv('testA.csv')
print('Train data shape:',train.shape)
print('TestA data shape:',testA.shape)
Train data shape: (800000, 47)
TestA data shape: (200000, 48)
train.head()
idloanAmntterminterestRateinstallmentgradesubGradeemploymentTitleemploymentLengthhomeOwnershipn5n6n7n8n9n10n11n12n13n14
0035000.0519.52917.97EE2320.02 years29.08.04.012.02.07.00.00.00.02.0
1118000.0518.49461.90DD2219843.05 years0NaNNaNNaNNaNNaN13.0NaNNaNNaNNaN
2212000.0516.99298.17DD331698.08 years00.021.04.05.03.011.00.00.00.04.0
3311000.037.26340.96AA446854.010+ years116.04.07.021.06.09.00.00.00.01.0
443000.0312.99101.07CC254.0NaN14.09.010.015.07.012.00.00.00.04.0

5 rows × 47 columns

5.2 分类指标评价计算示例

## 混淆矩阵
import numpy as np
from sklearn.metrics import confusion_matrix
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('混淆矩阵:\n',confusion_matrix(y_true, y_pred))
混淆矩阵:
 [[1 1]
 [1 1]]
## accuracy
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('ACC:',accuracy_score(y_true, y_pred))
ACC: 0.5
## Precision,Recall,F1-score
from sklearn import metrics
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('Precision',metrics.precision_score(y_true, y_pred))
print('Recall',metrics.recall_score(y_true, y_pred))
print('F1-score:',metrics.f1_score(y_true, y_pred))
Precision 0.5
Recall 0.5
F1-score: 0.5
## P-R曲线
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
precision, recall, thresholds = precision_recall_curve(y_true, y_pred)
plt.plot(precision, recall)
[<matplotlib.lines.Line2D at 0x2170d0d6108>]

P-R曲线

## ROC曲线
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
FPR,TPR,thresholds = roc_curve(y_true, y_pred)
plt.title('ROC')
plt.plot(FPR, TPR, 'b')
plt.plot([0,1], [0,1], 'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
Text(0.5, 0, 'FPR')

ROC

## AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:', roc_auc_score(y_true, y_scores))
AUC socre: 0.75
## KS值 在实际操作时往往使用ROC曲线配合求出KS值
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 1, 1]
FPR, TPR, thresholds = roc_curve(y_true, y_pred)
KS=abs(FPR - TPR).max()
print('KS值:', KS)
KS值: 0.5238095238095237

6. 经验总结

赛题理解是开始比赛的第一步,赛题的理解有助于对竞赛全局的把握。通过赛题理解有助于对赛题的业务逻辑把握,对于后期的特征工程构建和模型选择都尤为重要。

  • 在开始比赛之前要对赛题进行充分的了解。
  • 比赛什么时候开始,什么时候结束,什么时候换B榜数据。
  • 和该比赛有没有类似的比赛可以参考借鉴。
  • 线上提交结果的次数往往是有限的,提前了解每日可以提交的次数。
  • 比赛使用的是什么评价指标,可以选择相同的评价指标作为线下验证的方式。

7. 拓展知识——评分卡

评分卡是一张拥有分数刻度会让相应阈值的表。信用评分卡是用于用户信用的一张刻度表。以下代码是一个非标准评分卡的代码流程,用于刻画用户的信用评分。评分卡是金融风控中常用的一种对于用户信用进行刻画的手段哦!

#评分卡 不是标准评分卡
def Score(prob, P0=600, PDO=20, badrate=None, goodrate=None):
    P0 = P0
    PDO = PDO
    theta0 = badrate/goodrate
    B = PDO/np.log(2)
    A = P0 + B * np.log(2 * theta0)
    score = A - B * np.log(prob/(1-prob))
    return score

版权声明:本文为qq_43401035原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。