常见等价无穷小

当 x → 0 时 , 等 价 无 穷 小 如 下 当x\to0时,等价无穷小如下x0

1,x ∼ tan ⁡ x ∼ sin ⁡ x ∼ arcsin ⁡ x ∼ ( e x − 1 ) ∼ arctan ⁡ x ∼ l n ( 1 + x ) ∼ l n ( x + 1 + x 2 ) x\sim \tan x\sim \sin x\sim \arcsin x\sim (e^x-1)\sim\arctan x\sim ln(1+x)\sim ln(x+\sqrt{1+x^2})xtanxsinxarcsinx(ex1)arctanxln(1+x)ln(x+1+x2)
2,( 1 − cos ⁡ x ) ∼ 1 2 x 2 (1-\cos x)\sim\frac{1}{2}x^2(1cosx)21x2
3,l o g a ( 1 + x ) ∼ x l n a log_a(1+x)\sim\frac{x}{lna}loga(1+x)lnax
4,( x − sin ⁡ x ) ∼ 1 6 x 3 ∼ ( arcsin ⁡ x − x ) (x - \sin x)\sim\frac{1}{6}x^3\sim(\arcsin x-x)(xsinx)61x3(arcsinxx)
5,( tan ⁡ x − x ) ∼ 1 3 x 3 ∼ ( x − arctan ⁡ x ) (\tan x -x)\sim\frac{1}{3}x^3\sim(x-\arctan x)(tanxx)31x3(xarctanx)
6,( 1 + b x ) a − 1 ∼ a b x (1+bx)^a-1\sim abx(1+bx)a1abx
7,( tan ⁡ x − sin ⁡ x ) ∼ 1 2 x 3 (\tan x-\sin x)\sim \frac{1}{2}x^3(tanxsinx)21x3
8,a x − 1 ∼ x l n a a^x-1\sim xlnaax1xlna
9,( 1 + x n − 1 ) ∼ x n (\sqrt[n]{1+x}-1)\sim \frac{x}{n}(n1+x1)nx


版权声明:本文为linkequa原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。