当 x → 0 时 , 等 价 无 穷 小 如 下 当x\to0时,等价无穷小如下当x→0时,等价无穷小如下
1,x ∼ tan x ∼ sin x ∼ arcsin x ∼ ( e x − 1 ) ∼ arctan x ∼ l n ( 1 + x ) ∼ l n ( x + 1 + x 2 ) x\sim \tan x\sim \sin x\sim \arcsin x\sim (e^x-1)\sim\arctan x\sim ln(1+x)\sim ln(x+\sqrt{1+x^2})x∼tanx∼sinx∼arcsinx∼(ex−1)∼arctanx∼ln(1+x)∼ln(x+1+x2)
2,( 1 − cos x ) ∼ 1 2 x 2 (1-\cos x)\sim\frac{1}{2}x^2(1−cosx)∼21x2
3,l o g a ( 1 + x ) ∼ x l n a log_a(1+x)\sim\frac{x}{lna}loga(1+x)∼lnax
4,( x − sin x ) ∼ 1 6 x 3 ∼ ( arcsin x − x ) (x - \sin x)\sim\frac{1}{6}x^3\sim(\arcsin x-x)(x−sinx)∼61x3∼(arcsinx−x)
5,( tan x − x ) ∼ 1 3 x 3 ∼ ( x − arctan x ) (\tan x -x)\sim\frac{1}{3}x^3\sim(x-\arctan x)(tanx−x)∼31x3∼(x−arctanx)
6,( 1 + b x ) a − 1 ∼ a b x (1+bx)^a-1\sim abx(1+bx)a−1∼abx
7,( tan x − sin x ) ∼ 1 2 x 3 (\tan x-\sin x)\sim \frac{1}{2}x^3(tanx−sinx)∼21x3
8,a x − 1 ∼ x l n a a^x-1\sim xlnaax−1∼xlna
9,( 1 + x n − 1 ) ∼ x n (\sqrt[n]{1+x}-1)\sim \frac{x}{n}(n1+x−1)∼nx