SparkSQL | 窗口函数

窗口函数的定义引用一个大佬的定义: a window function calculates a return value for every input row of a table based on a group of rows。窗口函数与与其他函数的区别:

  • 普通函数: 作用于每一条记录,计算出一个新列(记录数不变);
  • 聚合函数: 作用于一组记录(全部数据按照某种方式分为多组),计算出一个聚合值(记录数变小);
  • 窗口函数: 作用于每一条记录,逐条记录去指定多条记录来计算一个值(记录数不变)。

窗口函数语法结构
<窗口函数>(参数)
OVER
(
[PARTITION BY <列清单>]
[ORDER BY <排序用清单列>] [ASC/DESC]
(ROWS | RANGE) <范围条件>
)

  • 函数名:
  • OVER: 关键字,说明这是窗口函数,不是普通的聚合函数;
  • 子句
    • PARTITION BY: 分组字段
    • ORDER BY: 排序字段
    • ROWS/RANGE窗口子句: 用于控制窗口的尺寸边界,有两种(ROW,RANGE)
      • ROW: 物理窗口,数据筛选基于排序后的index
      • RANGE: 逻辑窗口,数据筛选基于值

主要有以下三种窗口函数

  • ranking functions: 数据排序函数, 比如 :rank(…)、row_number(…)等
  • analytic functions: 统计比较函数, 比如:lead(…)、lag(…)、 first_value(…)等
  • aggregate functions: 聚合函数, 比如:sum(…)、 max(…)、min(…)、avg(…)等

数据加载

from pyspark.sql.types import *


schema = StructType().add('name', StringType(), True).add('create_time', TimestampType(), True).add('department', StringType(), True).add('salary', IntegerType(), True)
df = spark.createDataFrame([
    ("Tom", datetime.strptime("2020-01-01 00:01:00", "%Y-%m-%d %H:%M:%S"), "Sales", 4500),
    ("Georgi", datetime.strptime("2020-01-02 12:01:00", "%Y-%m-%d %H:%M:%S"), "Sales", 4200),
    ("Kyoichi", datetime.strptime("2020-02-02 12:10:00", "%Y-%m-%d %H:%M:%S"), "Sales", 3000),    
    ("Berni", datetime.strptime("2020-01-10 11:01:00", "%Y-%m-%d %H:%M:%S"), "Sales", 4700),
    ("Berni", datetime.strptime("2020-01-07 11:01:00", "%Y-%m-%d %H:%M:%S"), "Sales", None),    
    ("Guoxiang", datetime.strptime("2020-01-08 12:11:00", "%Y-%m-%d %H:%M:%S"), "Sales", 4200),   
    ("Parto", datetime.strptime("2020-02-20 12:01:00", "%Y-%m-%d %H:%M:%S"), "Finance", 2700),
    ("Anneke", datetime.strptime("2020-01-02 08:20:00", "%Y-%m-%d %H:%M:%S"), "Finance", 3300),
    ("Sumant", datetime.strptime("2020-01-30 12:01:05", "%Y-%m-%d %H:%M:%S"), "Finance", 3900),
    ("Jeff", datetime.strptime("2020-01-02 12:01:00", "%Y-%m-%d %H:%M:%S"), "Marketing", 3100),
    ("Patricio", datetime.strptime("2020-01-05 12:18:00", "%Y-%m-%d %H:%M:%S"), "Marketing", 2500)
], schema=schema)
df.createOrReplaceTempView('salary')
df.show()

+--------+-------------------+----------+------+
|    name|        create_time|department|salary|
+--------+-------------------+----------+------+
|     Tom|2020-01-01 00:01:00|     Sales|  4500|
|  Georgi|2020-01-02 12:01:00|     Sales|  4200|
| Kyoichi|2020-02-02 12:10:00|     Sales|  3000|
|   Berni|2020-01-10 11:01:00|     Sales|  4700|
|   Berni|2020-01-07 11:01:00|     Sales|  null|
|Guoxiang|2020-01-08 12:11:00|     Sales|  4200|
|   Parto|2020-02-20 12:01:00|   Finance|  2700|
|  Anneke|2020-01-02 08:20:00|   Finance|  3300|
|  Sumant|2020-01-30 12:01:05|   Finance|  3900|
|    Jeff|2020-01-02 12:01:00| Marketing|  3100|
|Patricio|2020-01-05 12:18:00| Marketing|  2500|
+--------+-------------------+----------+------+

ranking functions

sqlDataFrame功能
row_numberrowNumber从1~n的唯一序号值
rankrank与denseRank一样,都是排名,对于相同的数值,排名一致。区别:rank不会跳过并列的排名
dense_rankdenseRank同rank
percent_rankpercentRank计算公式: (组内排名-1)/(组内行数-1),如果组内只有1行,则结果为0
ntilentile将组内数据排序后,按照指定的n切分为n个桶,该值为当前行的桶号(桶号从1开始)
spark.sql("""
SELECT
    name 
    ,department
    ,salary
    ,row_number() over(partition by department order by salary) as index
    ,rank() over(partition by department order by salary) as rank
    ,dense_rank() over(partition by department order by salary) as dense_rank
    ,percent_rank() over(partition by department order by salary) as percent_rank
    ,ntile(2) over(partition by department order by salary) as ntile
FROM salary
""").toPandas()
namedepartmentsalaryindexrankdense_rankpercent_rankntile
0PatricioMarketing2500.01110.01
1JeffMarketing3100.02221.02
2BerniSalesNaN1110.01
3KyoichiSales3000.02220.21
4GeorgiSales4200.03330.41
5GuoxiangSales4200.04330.42
6TomSales4500.05540.82
7BerniSales4700.06651.02
8PartoFinance2700.01110.01
9AnnekeFinance3300.02220.51
10SumantFinance3900.03331.02

analytic functions

sqlDataFrame功能
cume_distcumeDist计算公式: 组内小于等于值当前行数/组内总行数
laglaglag(input, [offset,[default]]) 当前index<offset返回defalult(默认defalult=null), 否则返回input
leadlead与lag相反
first_valuefirst_value取分组内排序后,截止到当前行,第一个值
last_valuelast_value取分组内排序后,截止到当前行,最后一个值
spark.sql("""
SELECT
    name 
    ,department
    ,salary
    ,row_number() over(partition by department order by salary) as index
    ,cume_dist() over(partition by department order by salary) as cume_dist
    ,lag(salary, 1) over(partition by department order by salary) as lag -- 当前行向上
    ,lead(salary, 1) over(partition by department order by salary) as lead -- 当前行向下
    ,lag(salary, 0) over(partition by department order by salary) as lag_0
    ,lead(salary, 0) over(partition by department order by salary) as lead_0
    ,first_value(salary) over(partition by department order by salary) as first_value
    ,last_value(salary) over(partition by department order by salary) as last_value 
FROM salary
""").toPandas()
namedepartmentsalaryindexcume_distlagleadlag_0lead_0first_valuelast_value
0PatricioMarketing2500.010.500000NaN3100.02500.02500.02500.02500.0
1JeffMarketing3100.021.0000002500.0NaN3100.03100.02500.03100.0
2BerniSalesNaN10.166667NaN3000.0NaNNaNNaNNaN
3KyoichiSales3000.020.333333NaN4200.03000.03000.0NaN3000.0
4GeorgiSales4200.030.6666673000.04200.04200.04200.0NaN4200.0
5GuoxiangSales4200.040.6666674200.04500.04200.04200.0NaN4200.0
6TomSales4500.050.8333334200.04700.04500.04500.0NaN4500.0
7BerniSales4700.061.0000004500.0NaN4700.04700.0NaN4700.0
8PartoFinance2700.010.333333NaN3300.02700.02700.02700.02700.0
9AnnekeFinance3300.020.6666672700.03900.03300.03300.02700.03300.0
10SumantFinance3900.031.0000003300.0NaN3900.03900.02700.03900.0

aggregate functions

只是在一定窗口里实现一些普通的聚合函数。

sql功能
avg平均值
sum求和
min最小值
max最大值
spark.sql("""
SELECT
    name 
    ,department
    ,salary
    ,row_number() over(partition by department order by salary) as index
    ,sum(salary) over(partition by department order by salary) as sum
    ,avg(salary) over(partition by department order by salary) as avg
    ,min(salary) over(partition by department order by salary) as min
    ,max(salary) over(partition by department order by salary) as max
FROM salary
""").toPandas()
namedepartmentsalaryindexsumavgminmax
0PatricioMarketing2500.012500.02500.02500.02500.0
1JeffMarketing3100.025600.02800.02500.03100.0
2BerniSalesNaN1NaNNaNNaNNaN
3KyoichiSales3000.023000.03000.03000.03000.0
4GeorgiSales4200.0311400.03800.03000.04200.0
5GuoxiangSales4200.0411400.03800.03000.04200.0
6TomSales4500.0515900.03975.03000.04500.0
7BerniSales4700.0620600.04120.03000.04700.0
8PartoFinance2700.012700.02700.02700.02700.0
9AnnekeFinance3300.026000.03000.02700.03300.0
10SumantFinance3900.039900.03300.02700.03900.0

窗口子句

ROWS/RANG窗口子句: 用于控制窗口的尺寸边界,有两种(ROW,RANGE)

  • ROWS: 物理窗口,数据筛选基于排序后的index
  • RANGE: 逻辑窗口,数据筛选基于值

语法:OVER (PARTITION BY … ORDER BY … frame_type BETWEEN start AND end)

有以下5种边界

  • CURRENT ROW:
  • UNBOUNDED PRECEDING: 分区第一行
  • UNBOUNDED FOLLOWING: 分区最后一行
  • n PRECEDING: 当前行,向前n行
  • n FOLLOWING: 当前行,向后n行
  • UNBOUNDED: 起点
spark.sql("""
SELECT
    name 
    ,department
    ,create_time
    ,row_number() over(partition by department order by create_time) as index
    ,row_number() over(partition by department order by (case when salary is not null then create_time end)) as index_ignore_null
    ,salary    
    ,collect_list(salary) over(partition by department order by create_time rows between UNBOUNDED PRECEDING AND 1 PRECEDING) as before_salarys
    ,last(salary) over(partition by department order by create_time rows between UNBOUNDED PRECEDING AND 1 PRECEDING) as before_salary1
    ,lag(salary, 1) over(partition by department order by create_time) as before_salary2
    ,lead(salary, 1) over(partition by department order by create_time) as after_salary   
FROM salary
ORDER BY department, index
""").toPandas()
namedepartmentcreate_timeindexindex_ignore_nullsalarybefore_salarysbefore_salary1before_salary2after_salary
0AnnekeFinance2020-01-02 08:20:00113300.0[]NaNNaN3900.0
1SumantFinance2020-01-30 12:01:05223900.0[3300]3300.03300.02700.0
2PartoFinance2020-02-20 12:01:00332700.0[3300, 3900]3900.03900.0NaN
3JeffMarketing2020-01-02 12:01:00113100.0[]NaNNaN2500.0
4PatricioMarketing2020-01-05 12:18:00222500.0[3100]3100.03100.0NaN
5TomSales2020-01-01 00:01:00124500.0[]NaNNaN4200.0
6GeorgiSales2020-01-02 12:01:00234200.0[4500]4500.04500.0NaN
7BerniSales2020-01-07 11:01:0031NaN[4500, 4200]4200.04200.04200.0
8GuoxiangSales2020-01-08 12:11:00444200.0[4500, 4200]NaNNaN4700.0
9BerniSales2020-01-10 11:01:00554700.0[4500, 4200, 4200]4200.04200.03000.0
10KyoichiSales2020-02-02 12:10:00663000.0[4500, 4200, 4200, 4700]4700.04700.0NaN
# 同一个部门,上个非空工资入职同事的收入
spark.sql("""
SELECT
    name
    ,department
    ,create_time
    ,index
    ,salary
    ,before_salarys[size(before_salarys)-1] as before_salary
FROM(
    SELECT
        name 
        ,department
        ,create_time
        ,row_number() over(partition by department order by create_time) as index
        ,salary    
        ,collect_list(salary) over(partition by department order by create_time rows between UNBOUNDED PRECEDING AND 1 PRECEDING) as before_salarys 
    FROM salary
    ORDER BY department, index
) AS base
""").toPandas()
namedepartmentcreate_timeindexsalarybefore_salary
0AnnekeFinance2020-01-02 08:20:0013300.0NaN
1SumantFinance2020-01-30 12:01:0523900.03300.0
2PartoFinance2020-02-20 12:01:0032700.03900.0
3JeffMarketing2020-01-02 12:01:0013100.0NaN
4PatricioMarketing2020-01-05 12:18:0022500.03100.0
5TomSales2020-01-01 00:01:0014500.0NaN
6GeorgiSales2020-01-02 12:01:0024200.04500.0
7BerniSales2020-01-07 11:01:003NaN4200.0
8GuoxiangSales2020-01-08 12:11:0044200.04200.0
9BerniSales2020-01-10 11:01:0054700.04200.0
10KyoichiSales2020-02-02 12:10:0063000.04700.0

混合应用

spark.sql("""
SELECT
    name 
    ,department
    ,salary
    ,row_number() over(partition by department order by salary) as index
    ,salary - (min(salary) over(partition by department order by salary)) as salary_diff -- 比部门最低工资高多少
    ,min(salary) over() as min_salary_0 -- 最小工资
    ,first_value(salary) over(order by salary) as max_salary_1
    
    ,max(salary) over(order by salary) as current_max_salary_0 -- 截止到当前最大工资
    ,last_value(salary) over(order by salary) as current_max_salary_1 
    
    ,max(salary) over(partition by department order by salary rows between 1 FOLLOWING and 1 FOLLOWING) as next_salary_0 -- 按照salary排序下一条记录
    ,lead(salary) over(partition by department order by salary) as next_salary_1
FROM salary
WHERE salary is not null
""").toPandas()
namedepartmentsalaryindexsalary_diffmin_salary_0max_salary_1current_max_salary_0current_max_salary_1next_salary_0next_salary_1
0PatricioMarketing25001025002500250025003100.03100.0
1PartoFinance27001025002500270027003300.03300.0
2KyoichiSales30001025002500300030004200.04200.0
3JeffMarketing310026002500250031003100NaNNaN
4AnnekeFinance3300260025002500330033003900.03900.0
5SumantFinance3900312002500250039003900NaNNaN
6GeorgiSales42002120025002500420042004200.04200.0
7GuoxiangSales42003120025002500420042004500.04500.0
8TomSales45004150025002500450045004700.04700.0
9BerniSales4700517002500250047004700NaNNaN

参考


版权声明:本文为ganzheyu原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。