决策树基本上是一个二叉树流程图,其中每个节点根据某个特征变量分割一组观察值。
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
分类树(决策树)是一种十分常用的分类方法。它是一种监督学习,所谓监督学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。
决策树的生成
从根结点开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点,再对
子结点递归地调用以上方法,构建决策树;直到所有特征的信息增均很小或没有特征可以选择为止,最后得到一个决策树。
决策树需要有停止条件来终止其生长的过程。一般来说最低的条件是:当该节点下面的所有记录都属于同一类,或者当所有的记录属性都具
有相同的值时。这两种条件是停止决策树的必要条件,也是最低的条件。在实际运用中一般希望决策树提前停止生长,限定叶节点包含的最低
数据量,以防止由于过度生长造成的过拟合问题。
(三)决策树的剪枝
决策树生成算法递归地产生决策树,直到不能继续下去为止。这样产生的树往往对训练数据的分类很准确,但对未知的测试数据的分类却没有
那么准确,即出现过拟合现象。解决这个问题的办法是考虑决策树的复杂度,对已生成的决策树进行简化,这个过程称为剪枝。
决策树的剪枝往往通过极小化决策树整体的损失函数来实现。一般来说,损失函数可以进行如下的定义: 其中,
T为任意子树, 为对训练数据的预测误差(如基尼指数),为子树的叶结点个数,为参数,为参数是时的子树T的整
体损失,参数权衡训练数据的拟合程度与模型的复杂度。对于固定的,一定存在使损失函数最小的子树,将其表示为。当大的时
候,最优子树偏小;当小的时候,最优子树 偏大。