传染病模型
SI模型
假设考察地区的总人数N基本保持不变,时刻t(单位:天)的易感染者(susceptible)和已感染者(infective)的比例分别为s(t)和i(t)。设易感者每天被感染的几率,即感染率,为?。
{ d i d t = λ s i s + i = 1 i ( 0 ) = i 0 i ( t ) = 1 1 + 1 − i 0 i 0 e − r t \left\{\begin{array}{rcl}\frac{di}{dt} =\lambda si\\ s+i=1\\ i(0) =i_0 \end {array}\right.\\ i(t) = \frac{1}{1+\frac{1-i_0}{i_0}e^{-rt}}⎩⎨⎧dtdi=λsis+i=1i(0)=i0i(t)=1+i01−i0e−rt1
SIS模型
有些传染病,如伤风、痢疾等,治愈后基本上没有免疫力,于是患者愈合后又变成易感染者。假设每天被治愈的人数比例,即治愈率,为?。
{ d i d t = λ s i − μ i s + i = 1 i ( 0 ) = i 0 i ( t ) = λ − μ λ + λ − μ − λ i 0 i 0 e − ( λ − μ ) t \left\{\begin{array}{rcl}\frac{di}{dt} =\lambda si- \mu i\\ s+i=1\\ i(0) =i_0 \end {array}\right.\\ i(t) = \frac{\lambda - \mu}{\lambda+\frac{\lambda - \mu-\lambda i_0}{i_0}e^{-(\lambda-\mu)t}}⎩⎨⎧dtdi=λsi−μis+i=1i(0)=i0i(t)=λ+i0λ−μ−λi0e−(λ−μ)tλ−μ
SIR模型
然而,天花、麻疹等传染病的患者治愈后免疫力很强,这类患者治愈后不会成为易感染者。将治愈者和因感染死亡的人称为移除者(removed)。设时刻t的移除比例为r(t)。
{ d i d t = λ s i − μ i d s d t = − λ s i d r d t = μ i s + i + r = 1 i ( 0 ) = i 0 \left\{\begin{array}{rcl}\frac{di}{dt} =\lambda si- \mu i\\ \frac{ds}{dt} = -\lambda si\\ \frac{dr}{dt} = \mu i\\ s+i+r = 1\\ i(0) =i_0 \end {array}\right.\\⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧dtdi=λsi−μidtds=−λsidtdr=μis+i+r=1i(0)=i0
- 参数时变时的SIR模型
{ d i ( t ) d t = λ ( t ) s ( t ) i ( t ) − μ ( t ) i ( t ) d s ( t ) d t = − λ ( t ) s ( t ) i ( t ) d r ( t ) d t = μ ( t ) i ( t ) s ( t ) + i ( t ) + r ( t ) = 1 i ( 0 ) = i 0 s ( 0 ) = s 0 λ ( 0 ) = λ 0 μ ( 0 ) = μ 0 \left\{\begin{array}{rcl}\frac{di(t)}{dt} =\lambda(t) s(t)i(t)- \mu(t) i(t)\\ \frac{ds(t)}{dt} = -\lambda(t) s(t)i(t)\\ \frac{dr(t)}{dt} = \mu(t) i(t)\\ s(t)+i(t)+r(t) = 1\\ i(0) =i_0\\ s(0) = s_0\\ \lambda(0) = \lambda_0\\ \mu(0) = \mu_0 \end {array}\right.\\⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧dtdi(t)=λ(t)s(t)i(t)−μ(t)i(t)dtds(t)=−λ(t)s(t)i(t)dtdr(t)=μ(t)i(t)s(t)+i(t)+r(t)=1i(0)=i0s(0)=s0λ(0)=λ0μ(0)=μ0