出现此现象,一种可能的原因是使用了jupyter执行程序导致,jupyter似乎不支持创建子进程。
代码如下:
import torch,os,math
class MyIterableDataset(torch.utils.data.IterableDataset):
def __init__(self, start, end):
super(MyIterableDataset).__init__()
assert end > start, "this example code only works with end >= start"
self.start = start
self.end = end
def __iter__(self):
worker_info = torch.utils.data.get_worker_info()
if worker_info is None: # single-process data loading, return the full iterator
iter_start = self.start
iter_end = self.end
else: # in a worker process
# split workload
per_worker = int(math.ceil((self.end - self.start) / float(worker_info.num_workers)))
worker_id = worker_info.id
iter_start = self.start + worker_id * per_worker
iter_end = min(iter_start + per_worker, self.end)
return iter(range(iter_start, iter_end))
# should give same set of data as range(3, 7), i.e., [3, 4, 5, 6].
ds = MyIterableDataset(start=3, end=7)
print('Single-process loading 1')
print(list(torch.utils.data.DataLoader(ds, num_workers=0)))
# Mult-process loading with two worker processes
# Worker 0 fetched [3, 4]. Worker 1 fetched [5, 6].
print('Mult-process loading 2')
print(list(torch.utils.data.DataLoader(ds, num_workers=1)))
# With even more workers
print('Mult-process loading 3')
print(list(torch.utils.data.DataLoader(ds, num_workers=20)))
# time.sleep(5)
exit()
jupyter执行结果:
shell执行结果:
其它程序shell执行结果:
可见问题得到解决。
版权声明:本文为u012245588原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。