linux cuda 6.5安装,Ubuntu 16.04安装CUDA8.0 CUDA9.0 cuDNN5.1 cuDNN6 cuDNN7

安装显卡驱动

系统设置→软件和更新→附加驱动

选择使用NVIDIA binary driver - version 375.66 来自 nvidia-375 应用更改

安装完成后重启

在终端中输入nvidia-smi

CUDA

官网下载

PyTorch 0.3 支持 cuda9.0

f48a5c075d00

CUDA下载

运行

cuda8.0

sudo sh cuda_8.0.61_375.26_linux.run

cuda9.0

sudo sh cuda_9.0.176_384.81_linux.run

显卡驱动安装选择n

其他选择y

添加环境变量

sudo gedit /etc/profile

末尾添加

cuda8.0

export PATH=/usr/local/cuda-8.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64$LD_LIBRARY_PATH

cuda9.0

export PATH=/usr/local/cuda-9.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64$LD_LIBRARY_PATH

运行

source /etc/profile

测试

cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery

sudo make

./deviceQuery

f48a5c075d00

安装成功

cuDNN

官网注册后下载

选择cuDNN5.1或者cuDNN6(TensorFlow 1.3需要cuDNN6.0),下载cuDNN后解压,

Download cuDNN v5.1 (Jan 20, 2017), for CUDA 8.0→cuDNN v5.1 Library for Linux

Download cuDNN v6.0 (April 27, 2017), for CUDA 8.0→cuDNN v6.0 Library for Linux

[Download cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0]→cuDNN v7.0.5 Library for Linux

cuda8.0

sudo cp cuda/include/cudnn.h /usr/local/cuda-8.0/include

sudo cp cuda/lib64/libcudnn* /usr/local/cuda-8.0/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda-8.0/lib64/libcudnn*

cuda9.0

sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include

sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn*

参考资料