今天头一次使用TensorFlow2.0的GPU版本进行训练,训练中遇到【CUDA_ERROR_OUT_OF_MEMORY out of memory】,于是百度各种解决办法,基本能查到的都是TensorFlow1.0的用法,但此方法在TensorFlow2.0中不适用。于是经过多方查找,终于找到设置方法,在此进行记录,一是方便日后回看,二是弥补百度中各种查不到。
- TensorFlow1.0用法
from keras import backend as K config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) K.set_session(sess)- TensorFlow2.0用法
physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: for k in range(len(physical_devices)): tf.config.experimental.set_memory_growth(physical_devices[k], True) print('memory growth:', tf.config.experimental.get_memory_growth(physical_devices[k])) else: print("Not enough GPU hardware devices available")
版权声明:本文为baidu_41617231原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。