TensorFlow2.0 CUDA_ERROR_OUT_OF_MEMORY out of memory 解决办法

 

  今天头一次使用TensorFlow2.0的GPU版本进行训练,训练中遇到【CUDA_ERROR_OUT_OF_MEMORY out of memory】,于是百度各种解决办法,基本能查到的都是TensorFlow1.0的用法,但此方法在TensorFlow2.0中不适用。于是经过多方查找,终于找到设置方法,在此进行记录,一是方便日后回看,二是弥补百度中各种查不到。

  • TensorFlow1.0用法
 
  • from keras import backend as K
    
    config = tf.ConfigProto()
    
    config.gpu_options.allow_growth = True
    
    sess = tf.Session(config=config)
    
    K.set_session(sess)

     

  • TensorFlow2.0用法
 
  • physical_devices = tf.config.experimental.list_physical_devices('GPU')
    
    if len(physical_devices) > 0:
    
    for k in range(len(physical_devices)):
    
    tf.config.experimental.set_memory_growth(physical_devices[k], True)
    
    print('memory growth:', tf.config.experimental.get_memory_growth(physical_devices[k]))
    
    else:
    
    print("Not enough GPU hardware devices available")

     

 


版权声明:本文为baidu_41617231原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。