Hölder 不等式
Let 1 < p , q < ∞ , 1 p + 1 q = 1 1<p,q<\infty,\text{ }\frac{1}{p}+\frac{1}{q}=11<p,q<∞, p1+q1=1.
Form of Integral
f ∈ L p [ a , b ] , g ∈ L q [ a , b ] f\in {{L}^{p}}\left[ a,b \right],\text{ }g\in {{L}^{q}}\left[ a,b \right]f∈Lp[a,b], g∈Lq[a,b], then:
- f ( x ) g ( x ) ∈ L 1 [ a , b ] f\left( x \right)g\left( x \right)\in {{L}^{1}}\left[ a,b \right]f(x)g(x)∈L1[a,b]
- ∫ a b ∣ f ( x ) g ( x ) ∣ d x ≤ ( ∫ a b ∣ f ( x ) ∣ p d x ) 1 p ( ∫ a b ∣ g ( x ) ∣ q d x ) 1 q \int_{a}^{b}{\left| f\left( x \right)g\left( x \right) \right|dx}\le {{\left( \int_{a}^{b}{{{\left| f\left( x \right) \right|}^{p}}dx} \right)}^{\frac{1}{p}}}{{\left( \int_{a}^{b}{{{\left| g\left( x \right) \right|}^{q}}dx} \right)}^{\frac{1}{q}}}∫ab∣f(x)g(x)∣dx≤(∫ab∣f(x)∣pdx)p1(∫ab∣g(x)∣qdx)q1
or ∥ f g ∥ 1 ≤ ∥ f ∥ p ∥ g ∥ q {{\left\| fg \right\|}_{1}}\le {{\left\| f \right\|}_{p}}{{\left\| g \right\|}_{q}}∥fg∥1≤∥f∥p∥g∥q
Form of Series
x = { x k } ∈ l p , y = { y k } ∈ l q x=\left\{ {{x}_{k}} \right\}\in {{l}^{p}},\text{ }y=\left\{ {{y}_{k}} \right\}\in {{l}^{q}}x={xk}∈lp, y={yk}∈lq, then
- z = { x k y k } ∈ l 1 z=\left\{ {{x}_{k}}{{y}_{k}} \right\}\in {{l}^{1}}z={xkyk}∈l1
- ∑ k = 1 ∞ ∣ x k y k ∣ ≤ ( ∑ k = 1 ∞ ∣ x k ∣ p ) 1 p ( ∑ k = 1 ∞ ∣ y k ∣ q ) 1 q \sum\limits_{k=1}^{\infty }{\left| {{x}_{k}}{{y}_{k}} \right|}\le {{\left( \sum\limits_{k=1}^{\infty }{{{\left| {{x}_{k}} \right|}^{p}}} \right)}^{\frac{1}{p}}}{{\left( \sum\limits_{k=1}^{\infty }{{{\left| {{y}_{k}} \right|}^{q}}} \right)}^{\frac{1}{q}}}k=1∑∞∣xkyk∣≤(k=1∑∞∣xk∣p)p1(k=1∑∞∣yk∣q)q1
or∥ x y ∥ 1 ≤ ∥ x ∥ p ∥ y ∥ q {{\left\| xy \right\|}_{1}}\le {{\left\| x \right\|}_{p}}{{\left\| y \right\|}_{q}}∥xy∥1≤∥x∥p∥y∥q
Proof (Use Integral Form of an example)
- If ∥ f ∥ p = 0 ∨ ∥ g ∥ q = 0 {{\left\| f \right\|}_{p}}=0\text{ }\vee \text{ }{{\left\| g \right\|}_{q}}=0∥f∥p=0 ∨ ∥g∥q=0 is true, the conclusion is obvious.
- Suppose ∥ f ∥ p > 0 & ∥ g ∥ q > 0 {{\left\| f \right\|}_{p}}>0\text{ }\And \text{ }{{\left\| g \right\|}_{q}}>0∥f∥p>0 & ∥g∥q>0. Let ϕ ( t ) = t 1 p ( t > 0 ) \phi \left( t \right)={{t}^{\frac{1}{p}}}\left( t>0 \right)ϕ(t)=tp1(t>0).
ϕ ′ ′ ( t ) = 1 p ( 1 p − 1 ) t 1 p − 2 < 0 , ∀ t > 0 \phi ''\left( t \right)=\frac{1}{p}\left( \frac{1}{p}-1 \right){{t}^{\frac{1}{p}-2}}<0,\text{ }\forall t>0ϕ′′(t)=p1(p1−1)tp1−2<0, ∀t>0
Hence ϕ \phiϕ is concave and we have
ϕ ( t 1 ) ≤ ϕ ( t 2 ) + ϕ ′ ( t 2 ) ( t 2 − t 1 ) , ∀ t 1 , t 2 > 0 ⇒ ϕ ( t ) ≤ ϕ ( 1 ) + ϕ ′ ( 1 ) ( t − 1 ) ( L e t t = t 1 , t 2 = 1 ) ⇒ t 1 p ≤ 1 + t − 1 p = t p + 1 q ( 1 ) \begin{aligned} & \text{ }\phi \left( {{t}_{1}} \right)\le \phi \left( {{t}_{2}} \right)+\phi '\left( {{t}_{2}} \right)\left( {{t}_{2}}-{{t}_{1}} \right),\text{ }\forall {{t}_{1}},{{t}_{2}}>0 \\ & \Rightarrow \phi \left( t \right)\le \phi \left( 1 \right)+\phi '\left( 1 \right)\left( t-1 \right)\text{ }\left( Let\text{ }t={{t}_{1}},\text{ }{{t}_{2}}=1 \right) \\ & \Rightarrow {{t}^{\frac{1}{p}}}\le 1+\frac{t-1}{p}=\frac{t}{p}+\frac{1}{q}\text{ }\left( 1 \right) \\ \end{aligned} ϕ(t1)≤ϕ(t2)+ϕ′(t2)(t2−t1), ∀t1,t2>0⇒ϕ(t)≤ϕ(1)+ϕ′(1)(t−1) (Let t=t1, t2=1)⇒tp1≤1+pt−1=pt+q1 (1)
Let u ≥ 0 , v > 0 u\ge 0,\text{ }v>0u≥0, v>0, then we can set t = u p v − q > 0 t={{u}^{p}}{{v}^{-q}}>0t=upv−q>0.
( 1 ) ⇒ ( u p v − q ) 1 p ≤ 1 p ( u p v − q ) + 1 q ⇒ u v − q p ≤ 1 p u p v − q + 1 q ⇒ u v ≤ 1 p u p v − q ( v q p + 1 ) + 1 q ( v q p + 1 ) ⇒ u v ≤ 1 p u p v q p + 1 − q + 1 q v q p + 1 = u p p + v q q ( ∵ 1 p + 1 q = 1 ⇒ q p + 1 = q ) \begin{aligned} & \left( 1 \right)\Rightarrow {{\left( {{u}^{p}}{{v}^{-q}} \right)}^{\frac{1}{p}}}\le \frac{1}{p}\left( {{u}^{p}}{{v}^{-q}} \right)+\frac{1}{q} \\ & \Rightarrow u{{v}^{-\frac{q}{p}}}\le \frac{1}{p}{{u}^{p}}{{v}^{-q}}+\frac{1}{q} \\ & \Rightarrow uv\le \frac{1}{p}{{u}^{p}}{{v}^{-q}}\left( {{v}^{\frac{q}{p}+1}} \right)+\frac{1}{q}\left( {{v}^{\frac{q}{p}+1}} \right) \\ & \Rightarrow uv\le \frac{1}{p}{{u}^{p}}{{v}^{\frac{q}{p}+1-q}}+\frac{1}{q}{{v}^{\frac{q}{p}+1}}=\frac{{{u}^{p}}}{p}+\frac{{{v}^{q}}}{q}\text{ }\left( \because \frac{1}{p}+\frac{1}{q}=1\text{ }\Rightarrow \text{ }\frac{q}{p}+1=q \right) \\ \end{aligned}(1)⇒(upv−q)p1≤p1(upv−q)+q1⇒uv−pq≤p1upv−q+q1⇒uv≤p1upv−q(vpq+1)+q1(vpq+1)⇒uv≤p1upvpq+1−q+q1vpq+1=pup+qvq (∵p1+q1=1 ⇒ pq+1=q)
Let f 1 = ∥ f ∥ p − 1 f , g 1 = ∥ g ∥ q − 1 g {{f}_{1}}={{\left\| f \right\|}_{p}}^{-1}f,\text{ }{{g}_{1}}={{\left\| g \right\|}_{q}}^{-1}gf1=∥f∥p−1f, g1=∥g∥q−1g. Then ∥ f 1 ∥ p = ∥ g 1 ∥ q = 1 {{\left\| {{f}_{1}} \right\|}_{p}}={{\left\| {{g}_{1}} \right\|}_{q}}=1∥f1∥p=∥g1∥q=1, and we have
∥ f 1 g 1 ∥ 1 = ∥ ∥ f ∥ p − 1 ∥ g ∥ q − 1 f g ∥ 1 = ∥ f g ∥ 1 ∥ f ∥ p ∥ g ∥ q ( 2 ) \begin{aligned} & \text{ }{{\left\| {{f}_{1}}{{g}_{1}} \right\|}_{1}} \\ & ={{\left\| \text{ }{{\left\| f \right\|}_{p}}^{-1}{{\left\| g \right\|}_{q}}^{-1}fg\text{ } \right\|}_{1}} \\ & =\frac{{{\left\| fg \right\|}_{1}}}{{{\left\| f \right\|}_{p}}{{\left\| g \right\|}_{q}}}\text{ }\left( 2 \right) \\ \end{aligned} ∥f1g1∥1=∥∥∥ ∥f∥p−1∥g∥q−1fg ∥∥∥1=∥f∥p∥g∥q∥fg∥1 (2)
Set u = ∣ f 1 ∣ & v = ∣ g 1 ∣ u=\left| {{f}_{1}} \right|\text{ }\And \text{ }v=\left| {{g}_{1}} \right|u=∣f1∣ & v=∣g1∣, and we have
∣ f 1 ( x ) g 1 ( x ) ∣ ≤ ∣ f 1 ( x ) ∣ p p + ∣ g 1 ( x ) ∣ q q \left| {{f}_{1}}\left( x \right){{g}_{1}}\left( x \right) \right|\le \frac{{{\left| {{f}_{1}}\left( x \right) \right|}^{p}}}{p}+\frac{{{\left| {{g}_{1}}\left( x \right) \right|}^{q}}}{q}∣f1(x)g1(x)∣≤p∣f1(x)∣p+q∣g1(x)∣q
Therefore, we have
∥ f 1 g 1 ∥ 1 = ( ∫ a b ∣ f 1 ( x ) g 1 ( x ) ∣ 1 d x ) 1 1 ≤ ∫ a b [ ( ∣ f 1 ( x ) ∣ p p ) + ( ∣ g 1 ( x ) ∣ q q ) ] d x = 1 p ∫ a b ∣ f 1 ( x ) ∣ p d x + 1 q ∫ a b ∣ g 1 ( x ) ∣ q d x = 1 p ∥ f 1 ∥ p 1 p + 1 q ∥ g 1 ∥ q 1 q = 1 p + 1 q = 1 ( 3 ) \begin{aligned} & \text{ }{{\left\| {{f}_{1}}{{g}_{1}} \right\|}_{1}} \\ & ={{\left( \int_{a}^{b}{{{\left| {{f}_{1}}\left( x \right){{g}_{1}}\left( x \right) \right|}^{1}}dx} \right)}^{\frac{1}{1}}} \\ & \le \int_{a}^{b}{\left[ \left( \frac{{{\left| {{f}_{1}}\left( x \right) \right|}^{p}}}{p} \right)+\left( \frac{{{\left| {{g}_{1}}\left( x \right) \right|}^{q}}}{q} \right) \right]dx} \\ & \text{=}\frac{1}{p}\int_{a}^{b}{{{\left| {{f}_{1}}\left( x \right) \right|}^{p}}dx}+\frac{1}{q}\int_{a}^{b}{{{\left| {{g}_{1}}\left( x \right) \right|}^{q}}dx} \\ & =\frac{1}{p}{{\left\| {{f}_{1}} \right\|}_{p}}^{\frac{1}{p}}+\frac{1}{q}{{\left\| {{g}_{1}} \right\|}_{q}}^{\frac{1}{q}} \\ & =\frac{1}{p}+\frac{1}{q}=1\text{ }\left( 3 \right) \\ \end{aligned} ∥f1g1∥1=(∫ab∣f1(x)g1(x)∣1dx)11≤∫ab[(p∣f1(x)∣p)+(q∣g1(x)∣q)]dx=p1∫ab∣f1(x)∣pdx+q1∫ab∣g1(x)∣qdx=p1∥f1∥pp1+q1∥g1∥qq1=p1+q1=1 (3)
( 2 ) & ( 3 ) ⇒ ∥ f g ∥ 1 ≤ ∥ f ∥ p ∥ g ∥ q \left( 2 \right)\And \left( 3 \right)\text{ }\Rightarrow \text{ }{{\left\| fg \right\|}_{1}}\le {{\left\| f \right\|}_{p}}{{\left\| g \right\|}_{q}}(2)&(3) ⇒ ∥fg∥1≤∥f∥p∥g∥q
Minkowski 不等式
Let 1 ≤ p < ∞ 1\le p<\infty1≤p<∞。
Form of Integral
f , g ∈ L p [ a , b ] f,g\in {{L}^{p}}\left[ a,b \right]f,g∈Lp[a,b], then we have
- f + g ∈ L p [ a , b ] f+g\in {{L}^{p}}\left[ a,b \right]f+g∈Lp[a,b]
- ( ∫ a b ∣ f ( x ) + g ( x ) ∣ p d x ) 1 p ≤ ( ∫ a b ∣ f ( x ) ∣ p d x ) 1 p + ( ∫ a b ∣ g ( x ) ∣ p d x ) 1 p {{\left( \int_{a}^{b}{{{\left| f\left( x \right)+g\left( x \right) \right|}^{p}}dx} \right)}^{\frac{1}{p}}}\le {{\left( \int_{a}^{b}{{{\left| f\left( x \right) \right|}^{p}}dx} \right)}^{\frac{1}{p}}}+{{\left( \int_{a}^{b}{{{\left| g\left( x \right) \right|}^{p}}dx} \right)}^{\frac{1}{p}}}(∫ab∣f(x)+g(x)∣pdx)p1≤(∫ab∣f(x)∣pdx)p1+(∫ab∣g(x)∣pdx)p1
or
∥ f + g ∥ p ≤ ∥ f ∥ p + ∥ g ∥ p {{\left\| f+g \right\|}_{p}}\le {{\left\| f \right\|}_{p}}+{{\left\| g \right\|}_{p}}∥f+g∥p≤∥f∥p+∥g∥p
Form of Series
x = { x k } , y = { y k } ∈ l p x=\left\{ {{x}_{k}} \right\},\text{ }y=\left\{ {{y}_{k}} \right\}\in {{l}^{p}}x={xk}, y={yk}∈lp, then we have
- z = { x k + y k } ∈ l p z=\left\{ {{x}_{k}}+{{y}_{k}} \right\}\in {{l}^{p}}z={xk+yk}∈lp
- ( ∑ k = 1 ∞ ∣ x k + y k ∣ p ) 1 p ≤ ( ∑ k = 1 ∞ ∣ x k ∣ p ) 1 p + ( ∑ k = 1 ∞ ∣ y k ∣ p ) 1 p {{\left( \sum\limits_{k=1}^{\infty }{{{\left| {{x}_{k}}+{{y}_{k}} \right|}^{p}}} \right)}^{\frac{1}{p}}}\le {{\left( \sum\limits_{k=1}^{\infty }{{{\left| {{x}_{k}} \right|}^{p}}} \right)}^{\frac{1}{p}}}+{{\left( \sum\limits_{k=1}^{\infty }{{{\left| {{y}_{k}} \right|}^{p}}} \right)}^{\frac{1}{p}}}(k=1∑∞∣xk+yk∣p)p1≤(k=1∑∞∣xk∣p)p1+(k=1∑∞∣yk∣p)p1
or
∥ x + y ∥ p ≤ ∥ x ∥ p + ∥ y ∥ p {{\left\| x+y \right\|}_{p}}\le {{\left\| x \right\|}_{p}}+{{\left\| y \right\|}_{p}}∥x+y∥p≤∥x∥p+∥y∥p
Proof (Use Form of Integral as an example)
Note that
∫ a b ∣ f + g ∣ p d x = ∫ a b ∣ f + g ∣ ⋅ ∣ f + g ∣ p − 1 d x ≤ ∫ a b ( ∣ f ∣ + ∣ g ∣ ) ∣ f + g ∣ p − 1 d x = ∫ a b ∣ f ∣ ∣ f + g ∣ p − 1 d x + ∫ a b ∣ g ∣ ∣ f + g ∣ p − 1 d x \begin{aligned} & \text{ }\int_{a}^{b}{{{\left| f+g \right|}^{p}}dx} \\ & =\int_{a}^{b}{\left| f+g \right|\centerdot {{\left| f+g \right|}^{p-1}}}dx \\ & \le \int_{a}^{b}{\left( \left| f \right|+\left| g \right| \right){{\left| f+g \right|}^{p-1}}dx} \\ & =\int_{a}^{b}{\left| f \right|{{\left| f+g \right|}^{p-1}}dx}+\int_{a}^{b}{\left| g \right|{{\left| f+g \right|}^{p-1}}dx} \\ \end{aligned} ∫ab∣f+g∣pdx=∫ab∣f+g∣⋅∣f+g∣p−1dx≤∫ab(∣f∣+∣g∣)∣f+g∣p−1dx=∫ab∣f∣∣f+g∣p−1dx+∫ab∣g∣∣f+g∣p−1dx
By Hölder’s Inequalty, we have
∫ a b ∣ f ∣ ∣ f + g ∣ p − 1 d x ≤ ( ∫ a b ∣ f ∣ p d x ) 1 p ( ∫ a b ∣ f + g ∣ ( p − 1 ) q d x ) 1 q ∫ a b ∣ g ∣ ∣ f + g ∣ p − 1 d x ≤ ( ∫ a b ∣ g ∣ p d x ) 1 p ( ∫ a b ∣ f + g ∣ ( p − 1 ) q d x ) 1 q \begin{aligned} & \int_{a}^{b}{\left| f \right|{{\left| f+g \right|}^{p-1}}dx}\le {{\left( \int_{a}^{b}{{{\left| f \right|}^{p}}dx} \right)}^{\frac{1}{p}}}{{\left( \int_{a}^{b}{{{\left| f+g \right|}^{\left( p-1 \right)q}}}dx \right)}^{\frac{1}{q}}} \\ & \int_{a}^{b}{\left| g \right|{{\left| f+g \right|}^{p-1}}dx}\le {{\left( \int_{a}^{b}{{{\left| g \right|}^{p}}dx} \right)}^{\frac{1}{p}}}{{\left( \int_{a}^{b}{{{\left| f+g \right|}^{\left( p-1 \right)q}}}dx \right)}^{\frac{1}{q}}} \\ \end{aligned}∫ab∣f∣∣f+g∣p−1dx≤(∫ab∣f∣pdx)p1(∫ab∣f+g∣(p−1)qdx)q1∫ab∣g∣∣f+g∣p−1dx≤(∫ab∣g∣pdx)p1(∫ab∣f+g∣(p−1)qdx)q1
Thus we have
∫ a b ∣ f + g ∣ p d x ≤ ( ∥ f ∥ p + ∥ g ∥ p ) ( ∫ a b ∣ f + g ∣ ( p − 1 ) q d x ) 1 q = ( ∥ f ∥ p + ∥ g ∥ p ) ( ∫ a b ∣ f + g ∣ p d x ) 1 q ( ∵ 1 p + 1 q = 1 ⇒ q + p = p q ⇒ q ( p − 1 ) = p ) \begin{aligned} & \int_{a}^{b}{{{\left| f+g \right|}^{p}}dx}\le \left( {{\left\| f \right\|}_{p}}+{{\left\| g \right\|}_{p}} \right){{\left( \int_{a}^{b}{{{\left| f+g \right|}^{\left( p-1 \right)q}}dx} \right)}^{\frac{1}{q}}} \\ & =\left( {{\left\| f \right\|}_{p}}+{{\left\| g \right\|}_{p}} \right){{\left( \int_{a}^{b}{{{\left| f+g \right|}^{p}}dx} \right)}^{\frac{1}{q}}} \\ & \left( \because \frac{1}{p}+\frac{1}{q}=1\text{ }\Rightarrow \text{ }q+p=pq\text{ }\Rightarrow \text{ }q\left( p-1 \right)=p \right) \\ \end{aligned}∫ab∣f+g∣pdx≤(∥f∥p+∥g∥p)(∫ab∣f+g∣(p−1)qdx)q1=(∥f∥p+∥g∥p)(∫ab∣f+g∣pdx)q1(∵p1+q1=1 ⇒ q+p=pq ⇒ q(p−1)=p)
If ∥ f + g ∥ p = ( ∫ a b ∣ f + g ∣ p d x ) 1 p = 0 {{\left\| f+g \right\|}_{p}}={{\left( \int_{a}^{b}{{{\left| f+g \right|}^{p}}dx} \right)}^{\frac{1}{p}}}=0∥f+g∥p=(∫ab∣f+g∣pdx)p1=0, then ∫ a b ∣ f + g ∣ p d x = 0 \int_{a}^{b}{{{\left| f+g \right|}^{p}}dx}=0∫ab∣f+g∣pdx=0, both sides are 0, and we have
∥ f ∥ p + ∥ g ∥ p = ( ∫ a b ∣ f ( x ) ∣ p d x ) 1 p + ( ∫ a b ∣ g ( x ) ∣ p d x ) 1 p ≥ 0 + 0 = 0 = ∥ f + g ∥ p \begin{aligned} & {{\left\| f \right\|}_{p}}+{{\left\| g \right\|}_{p}} \\ & ={{\left( \int_{a}^{b}{{{\left| f\left( x \right) \right|}^{p}}dx} \right)}^{\frac{1}{p}}}+{{\left( \int_{a}^{b}{{{\left| g\left( x \right) \right|}^{p}}dx} \right)}^{\frac{1}{p}}} \\ & \ge 0+0 \\ & =0 \\ & ={{\left\| f+g \right\|}_{p}} \\ \end{aligned}∥f∥p+∥g∥p=(∫ab∣f(x)∣pdx)p1+(∫ab∣g(x)∣pdx)p1≥0+0=0=∥f+g∥pOtherwise, one divides both sides by ( ∫ a b ∣ f + g ∣ p d x ) 1 q {{\left( \int_{a}^{b}{{{\left| f+g \right|}^{p}}}dx \right)}^{\frac{1}{q}}}(∫ab∣f+g∣pdx)q1, we have
( ∫ a b ∣ f + g ∣ p d x ) 1 − 1 q ≤ ∥ f ∥ p + ∥ g ∥ p ⇒ ( ∫ a b ∣ f + g ∣ p d x ) 1 p = ∥ f + g ∥ p ≤ ∥ f ∥ p + ∥ g ∥ p \begin{aligned} & \text{ }{{\left( \int_{a}^{b}{{{\left| f+g \right|}^{p}}dx} \right)}^{1-\frac{1}{q}}}\le {{\left\| f \right\|}_{p}}+{{\left\| g \right\|}_{p}} \\ & \Rightarrow {{\left( \int_{a}^{b}{{{\left| f+g \right|}^{p}}dx} \right)}^{\frac{1}{p}}}={{\left\| f+g \right\|}_{p}}\le {{\left\| f \right\|}_{p}}+{{\left\| g \right\|}_{p}} \\ \end{aligned} (∫ab∣f+g∣pdx)1−q1≤∥f∥p+∥g∥p⇒(∫ab∣f+g∣pdx)p1=∥f+g∥p≤∥f∥p+∥g∥p