LightOJ - 1007 Mathematically Hard(欧拉函数质数打表)

LINK

Mathematically some problems look hard. But with the help of the computer, some problems can be easily solvable.

In this problem, you will be given two integers a and b. You have to find the summation of the scores of the numbers from a to b (inclusive). The score of a number is defined as the following function:

score(x)=n2 ,n<x and gcd(n,x)=1
To illustrate, n is the number of relatively prime numbers with x, which are smaller than x.

For example,
For 6, the relatively prime numbers with 6 are {1, 5}. So, score (6) = 22 = 4.
For 16, the relatively prime numbers with 16 are {1, 3, 5, 7, 9, 11, 13, 15}. So, score (16) = 82 = 64.

Now, you have to solve this task.

Input
Input starts with an integer T (≤ 105), denoting the number of test cases.

Each case will contain two integers a and b (2 ≤ a ≤ b ≤ 5 * 106).

Output
For each case, print the case number and the summation of all the scores from a to b.

Sample Input
3
6 6
8 8
2 20
Sample Output
Case 1: 4
Case 2: 16
Case 3: 1237


  • 题意:t组样例,每组有a,b两个数,求a到b之间每个数的欧拉函数的平方再求和;
  • 分析:数据过多,用欧拉函数质数打表
  • ac代码:
#include<stdio.h>
#include<algorithm>
using namespace std;
typedef  long long ll;
ll sum[5000010];
void init()//质数打表 
{
	int i,j; 
    for(i=0;i<5000010;i++)
        sum[i]=i;//给n赋初值 
    for(i=2;i<5000010;i++) 
        if(sum[i]==i)//质数 
        {
            for(j=i;j<5000010;j+=i)//质数去找与它互质的数 
                sum[j]=sum[j]/i*(i-1);
        }
    for(i=1;i<5000010;i++)//此时sum还存储它之前的score和 
        sum[i]=sum[i-1]+sum[i]*sum[i]; 
}
int main()
{
    init();
    int t,cas=1;
    scanf("%d",&t);
    while(t--)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        printf("Case %d: %llu\n",cas++,sum[b]-sum[a-1]);
    }
}
/*欧拉函数:求小于n有多少个数是相对n的质数的:推导后为sum=n/i*(i-1) 
		ans=n;
	for(i=2;i<=n/i;i++)
	{
		if(n%i==0)
		{
			ans=ans/i*(i-1);
			while(n%i==0)
			n=n/i;
		}
	}
	if(n>1)
	ans=ans/n*(n-1);
这是暴力,样例数小于10万,n小于500万,单个样例最多是5万次,50000*100000会超时; 
*/