1 提取绿色的方法
首先经过BGR分离,做一个2g-r-b的处理,然后进行二值化处理得到最终结果。
缺点:对阳光照射的影响有很大的影响,最好选取阳光充足的照片
对下面这张照片进行处理(从一篇论文里面摘的)
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 使用2g-r-b分离土壤与背景
src = cv2.imread('C:\\Users\\zjk\\PycharmProjects\\untitled1\\1.bmp')
cv2.imshow('src', src)
# 转换为浮点数进行计算
fsrc = np.array(src, dtype=np.float32) / 255.0
(b, g, r) = cv2.split(fsrc)
gray = 2 * g - b - r
# 求取最大值和最小值
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
# 计算直方图
hist = cv2.calcHist([gray], [0], None, [256], [minVal, maxVal])
plt.plot(hist)
plt.show()
# 转换为u8类型,进行otsu二值化
gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8)
(thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
cv2.imshow('bin_img', bin_img)
# 得到彩色的图像
(b8, g8, r8) = cv2.split(src)
color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img])
cv2.imshow('color_img', color_img)
cv2.waitKey()
cv2.destroyAllWindows()
2 视频
import cv2
import numpy as np
import time
# 使用2g-r-b分离土壤与背景
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1080)#设定分辨率,随便给个分辨率,它会自己适应到一个属于自己的比较合适的分辨率
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
while(cap.isOpened()):
t = time.time()
ret,frame = cap.read()
# print(frame.shape)
fsrc = np.array(frame, dtype=np.float32) / 255.0#这里除以255是为了下面2g - r - b做准备,而且于此同时将数组转换为float小数类型
print(fsrc)
(b, g, r) = cv2.split(fsrc)
gray = 2 * g - b - r#由于一张图片最大255,如果我2*g - b -r 超出了255 默认是255,但是如果是小数,怎么也不会超出255,因为uint8类型超过255就是这个数减255截断
# cv2.imshow('graw',gray)
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
print(maxVal-minVal)
gray_u8 = np.array((gray - minVal) * 255/ (maxVal - minVal) , dtype=np.uint8) #最大的*255可能会超出255,所以要除以一个max-min,保证最大是255
# cv2.imshow('gray_u8',gray_u8)
(thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)# cv2.THRESH_OTSU是自动分割阈值
cv2.imshow('bin_img', bin_img)
# 得到彩色的图像
(b8, g8, r8) = cv2.split(frame)
color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img])#将原来彩色图片与分割出来的进行合并
cv2.imshow('color_img', color_img)
f = time.time()
print("时间是",f-t)
c = cv2.waitKey(1)
if c == 27:
break
cap.release()
cv2.destroyAllWindows()
3 HSV+ 2G-R-B + 开运算 + 膨胀
import cv2
import numpy as np
import time
import matplotlib.pyplot as plt
cap = cv2.VideoCapture(1)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1080)#设定分辨率,随便给个分辨率,它会自己适应到一个属于自己的比较合适的分辨率
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
while(cap.isOpened()):
t = time.time()
ret, img = cap.read()
img = cv2.blur(img, (5, 5))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
minGreen = np.array([40, 50, 50])
maxGreen = np.array([90, 255, 255])
mask = cv2.inRange(hsv, minGreen, maxGreen)
k = np.ones((4, 4), np.uint8)
mask1 = cv2.morphologyEx(mask, cv2.MORPH_OPEN, k)
k2 = np.ones((10, 10), np.uint8)
mask2 = cv2.dilate(mask1, k2)
green = cv2.bitwise_and(img, img, mask=mask2)
cv2.imshow('img', img)
cv2.imshow('green', green)
fsrc = np.array(green, dtype=np.float32) / 255.0
(b, g, r) = cv2.split(fsrc)
gray = 2 * g - b - r
cv2.imshow('gray', gray)
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8)
(thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
cv2.imshow('bin_img', bin_img)
(b8, g8, r8) = cv2.split(green)
color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img])
cv2.imshow('color_img', color_img)
print('消耗时间是:', time.time()-t)
k = cv2.waitKey(1)
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
4 计算面积,并且挑出需要的轮廓(未完待续)
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 使用2g-r-b分离土壤与背景
src = cv2.imread('C:\\Users\\zjk\\PycharmProjects\\zjk\\cao1.jpg')
src = cv2.resize(src,(1280,1280))
cv2.imshow('src', src)
# 转换为浮点数进行计算
fsrc = np.array(src, dtype=np.float32) / 255.0
(b, g, r) = cv2.split(fsrc)
gray = 2 * g - b - r
# 求取最大值和最小值
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
# 计算直方图
hist = cv2.calcHist([gray], [0], None, [256], [minVal, maxVal])
plt.plot(hist)
#plt.show()
# 转换为u8类型,进行otsu二值化
gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8)
(thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
cv2.imshow('bin_img', bin_img)
print(np.sum(bin_img==255))
# 得到彩色的图像
(b8, g8, r8) = cv2.split(src)
color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img])
cv2.imshow('color_img', color_img)
bin_img2 = bin_img.copy()
contours,hierarchy = cv2.findContours(bin_img2,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
src2 = src.copy()
t = len(contours)
contoursImg = []
final = np.zeros(bin_img.shape,np.uint8)#新建一个全黑画布
for i in range(t):
temp = np.zeros(bin_img.shape,np.uint8)#创建一块黑布
contoursImg.append(temp)#每一次都把创建的黑布放在contoursImg中
contoursImg[i] = cv2.drawContours(contoursImg[i],contours,i,(255,255,255),-1)
area = cv2.contourArea(contours[i])
if area > 10000:#判断面积大小,如果符合要求,将final黑画布与contoursImg[i]相加,由于是uint8,最大不会超过255
final = cv2.bitwise_or(final,contoursImg[i])
#cv2.imshow('contours+['+str(i)+']',contoursImg[i])
final_1 = cv2.bitwise_and(final,bin_img)
#final_1[1,1] = 255
cv2.imshow('final',final_1)
print(np.sum(final_1==255))
print(np.sum(bin_img==255)-np.sum(final_1==255))
cv2.waitKey()
cv2.destroyAllWindows()
结果解释
335670代表bin_img中的元素255(即白点的个数)的个数
304915代表bin_img中轮廓面积超过10000的面积(也是指的白点的个数)
30755代表上边两者的差值
视频读取并且保存处理后的图像
import cv2
import numpy as np
def green(img):
# img = cv2.blur(img,(10,10))
# cv2.imshow('img', img)
fsrc = np.array(img, dtype=np.float32) / 255.0
(b, g, r) = cv2.split(fsrc)
gray = 2 * g - b - r
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
gray_u8 = np.array((gray - minVal) * 255 / (maxVal - minVal), dtype=np.uint8)
(thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
(b8, g8, r8) = cv2.split(img)
color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img])
# cv2.imshow("color_img", color_img)
return color_img
cap = cv2.VideoCapture('output2.avi')
fourcc = cv2.VideoWriter_fourcc(*'XVID') # 初始化
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) # 得到摄像头的高度和宽度
out = cv2.VideoWriter('output22.avi', fourcc, 20, size) # 带入初始化,设置fps,带入摄像头高度
while (cap.isOpened()):
ret, img = cap.read()
if ret == True:
img = green(img)
out.write(img)
k = cv2.waitKey(1)
if k == 27:
break
else:
break
out.release()
cap.release()
cv2.destroyAllWindows()
版权声明:本文为weixin_44524040原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。