记录PyTorch搭建各卷积网络的测试

import datetime

import torch
import torchvision.models
from torchvision import datasets
from torchvision import transforms as T
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
from PIL import Image
import xml.etree.ElementTree as ET
import os
import torch.nn.functional as F


# AlexNet
class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(48, 128, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(128, 192, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes)
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')  # 何教授方法
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)  # 正态分布赋值
                nn.init.constant_(m.bias, 0)


# VGG16
class VGG16(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(VGG16, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.layer2 = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.layer3 = nn.Sequential(
            nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.layer4 = nn.Sequential(
            nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.layer5 = nn.Sequential(
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.conv = nn.Sequential(
            self.layer1,
            self.layer2,
            self.layer3,
            self.layer4,
            self.layer5
        )
        self.fc = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(4096, 1000),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(1000, num_classes)
        )

    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')  # 何教授方法
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)  # 正态分布赋值
                nn.init.constant_(m.bias, 0)


# ResNet50
class BottleNeck_1(nn.Module):
    def __init__(self, in_chans, out_chans, stride):
        super(BottleNeck_1, self).__init__()
        self.conv1 = nn.Conv2d(in_chans, out_chans, kernel_size=1, stride=stride, bias=False)
        self.batch_norm1 = nn.BatchNorm2d(out_chans)
        self.conv2 = nn.Conv2d(out_chans, out_chans, kernel_size=3, stride=1, padding=1, bias=False)
        self.batch_norm2 = nn.BatchNorm2d(out_chans)
        self.conv3 = nn.Conv2d(out_chans, out_chans * 4, kernel_size=1, stride=1, bias=False)
        self.batch_norm3 = nn.BatchNorm2d(out_chans * 4)
        self.conv4 = nn.Conv2d(in_chans, out_chans * 4, kernel_size=1, stride=stride, bias=False)
        self.batch_norm4 = nn.BatchNorm2d(out_chans * 4)

        torch.nn.init.kaiming_normal_(self.conv1.weight, nonlinearity='relu')
        torch.nn.init.constant_(self.batch_norm1.weight, 0.5)
        torch.nn.init.zeros_(self.batch_norm1.bias)
        torch.nn.init.kaiming_normal_(self.conv2.weight, nonlinearity='relu')
        torch.nn.init.constant_(self.batch_norm2.weight, 0.5)
        torch.nn.init.zeros_(self.batch_norm2.bias)
        torch.nn.init.kaiming_normal_(self.conv3.weight, nonlinearity='relu')
        torch.nn.init.constant_(self.batch_norm3.weight, 0.5)
        torch.nn.init.zeros_(self.batch_norm3.bias)
        torch.nn.init.kaiming_normal_(self.conv4.weight, nonlinearity='relu')
        torch.nn.init.constant_(self.batch_norm4.weight, 0.5)
        torch.nn.init.zeros_(self.batch_norm4.bias)

    def forward(self, x):
        out = self.conv1(x)
        out = self.batch_norm1(out)
        out = torch.relu(out)

        out = self.conv2(out)
        out = self.batch_norm2(out)
        out = torch.relu(out)

        out = self.conv3(out)
        out = self.batch_norm3(out)

        residual = self.conv4(x)
        residual = self.batch_norm4(residual)

        return torch.relu(out + residual)


class BottleNeck_2(nn.Module):
    def __init__(self, n_chans):
        super(BottleNeck_2, self).__init__()
        self.conv1 = nn.Conv2d(n_chans, n_chans // 4, kernel_size=1, stride=1, bias=False)
        self.batch_norm1 = nn.BatchNorm2d(n_chans // 4)
        self.conv2 = nn.Conv2d(n_chans // 4, n_chans // 4, kernel_size=3, stride=1, padding=1, bias=False)
        self.batch_norm2 = nn.BatchNorm2d(n_chans // 4)
        self.conv3 = nn.Conv2d(n_chans // 4, n_chans, kernel_size=1, stride=1, bias=False)
        self.batch_norm3 = nn.BatchNorm2d(n_chans)

        torch.nn.init.kaiming_normal_(self.conv1.weight, nonlinearity='relu')
        torch.nn.init.constant_(self.batch_norm1.weight, 0.5)
        torch.nn.init.zeros_(self.batch_norm1.bias)
        torch.nn.init.kaiming_normal_(self.conv2.weight, nonlinearity='relu')
        torch.nn.init.constant_(self.batch_norm2.weight, 0.5)
        torch.nn.init.zeros_(self.batch_norm2.bias)
        torch.nn.init.kaiming_normal_(self.conv3.weight, nonlinearity='relu')
        torch.nn.init.constant_(self.batch_norm3.weight, 0.5)
        torch.nn.init.zeros_(self.batch_norm3.bias)

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.batch_norm1(out)
        out = torch.relu(out)

        out = self.conv2(out)
        out = self.batch_norm2(out)
        out = torch.relu(out)

        out = self.conv3(out)
        out = self.batch_norm3(out)

        return torch.relu(out + residual)


class ResNet50(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        self.num_classes = num_classes
        self.stage0 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, bias=False),
                                    nn.MaxPool2d(kernel_size=3, stride=2))
        self.stage1 = nn.Sequential(BottleNeck_1(64, 64, 1), *(2 * [BottleNeck_2(256)]))
        self.stage2 = nn.Sequential(BottleNeck_1(256, 128, 2), *(3 * [BottleNeck_2(512)]))
        self.stage3 = nn.Sequential(BottleNeck_1(512, 256, 2), *(5 * [BottleNeck_2(1024)]))
        self.stage4 = nn.Sequential(BottleNeck_1(1024, 512, 2), *(2 * [BottleNeck_2(2048)]))
        self.conv = nn.Sequential(
            self.stage0,
            self.stage1,
            self.stage2,
            self.stage3,
            self.stage4
        )
        self.fc = nn.Sequential(
            nn.Linear(2048 * 7 * 7, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(4096, 1000),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(1000, num_classes)
        )

    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x


# ResNet18
class ResBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super(ResBlock, self).__init__()
        self.stride = stride
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels=in_channels,
                      out_channels=out_channels,
                      stride=stride,
                      padding=1,
                      kernel_size=3,
                      bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=out_channels,
                      out_channels=out_channels,
                      stride=1,
                      padding=1,
                      kernel_size=3,
                      bias=False),
            nn.BatchNorm2d(out_channels),
        )
        self.conv2 = nn.Conv2d(in_channels=in_channels,
                               out_channels=out_channels,
                               stride=stride,
                               kernel_size=1,
                               bias=False)

    def forward(self, x):
        out = self.conv1(x)
        if self.stride == 2:
            residual = self.conv2(x)
        else:
            residual = x
        return torch.relu(residual + out)


class ResNet18(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        self.num_classes = num_classes
        self.stage0 = nn.Sequential(nn.Conv2d(in_channels=3,
                                              out_channels=64,
                                              kernel_size=7,
                                              stride=2,
                                              padding=3),
                                    nn.MaxPool2d(kernel_size=3,
                                                 padding=1,
                                                 stride=2))
        self.stage1 = nn.Sequential(ResBlock(64, 64, 1), ResBlock(64, 64, 1))
        self.stage2 = nn.Sequential(ResBlock(64, 128, 2), ResBlock(128, 128, 1))
        self.stage3 = nn.Sequential(ResBlock(128, 256, 2), ResBlock(256, 256, 1))
        self.stage4 = nn.Sequential(ResBlock(256, 512, 2), ResBlock(512, 512, 1))

        self.conv = nn.Sequential(self.stage0, self.stage1, self.stage2, self.stage3, self.stage4,
                                  nn.AvgPool2d(kernel_size=7))
        self.fn = nn.Sequential(nn.Linear(512, 256),
                                nn.ReLU(inplace=True),
                                nn.BatchNorm1d(256),
                                nn.Linear(256, num_classes))
        self._initialize_weights()

    def forward(self, x):
        out = self.conv(x)
        out = out.view(out.size(0), -1)
        out = self.fn(out)
        return out

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')  # 何教授方法
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)  # 正态分布赋值
                nn.init.constant_(m.bias, 0)


# GoogLeNet
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3m, ch3x3, ch5x5m, ch5x5, ch1x1p):
        super().__init__()
        self.passage1 = nn.Sequential(nn.Conv2d(in_channels, ch1x1, kernel_size=1),
                                      nn.BatchNorm2d(ch1x1),
                                      nn.ReLU(inplace=True))
        self.passage2 = nn.Sequential(nn.Conv2d(in_channels, ch3x3m, kernel_size=1),
                                      nn.BatchNorm2d(ch3x3m),
                                      nn.ReLU(ch3x3m),
                                      nn.Conv2d(ch3x3m, ch3x3, kernel_size=3, padding=1),
                                      nn.BatchNorm2d(ch3x3),
                                      nn.ReLU(inplace=True))
        self.passage3 = nn.Sequential(nn.Conv2d(in_channels, ch5x5m, kernel_size=1),
                                      nn.BatchNorm2d(ch5x5m),
                                      nn.ReLU(ch5x5m),
                                      nn.Conv2d(ch5x5m, ch5x5, kernel_size=5, padding=2),
                                      nn.BatchNorm2d(ch5x5),
                                      nn.ReLU(inplace=True))
        self.passage4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
                                      nn.Conv2d(in_channels, ch1x1p, kernel_size=1),
                                      nn.BatchNorm2d(ch1x1p),
                                      nn.ReLU(inplace=True))

    def forward(self, x):
        passage_1 = self.passage1(x)
        passage_2 = self.passage2(x)
        passage_3 = self.passage3(x)
        passage_4 = self.passage4(x)
        outputs = [passage_1, passage_2, passage_3, passage_4]
        return torch.cat(outputs, 1)


class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=True):
        super().__init__()
        self.num_classes = num_classes
        self.net = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
                                 nn.BatchNorm2d(64),
                                 nn.ReLU(inplace=True),
                                 nn.MaxPool2d(3, stride=2, ceil_mode=True),
                                 nn.Conv2d(64, 64, kernel_size=1),
                                 nn.BatchNorm2d(64),
                                 nn.ReLU(inplace=True),
                                 nn.Conv2d(64, 192, kernel_size=3, padding=1),
                                 nn.BatchNorm2d(192),
                                 nn.ReLU(inplace=True),
                                 nn.MaxPool2d(3, stride=2, ceil_mode=True),
                                 Inception(192, 64, 96, 128, 16, 32, 32),
                                 Inception(256, 128, 128, 192, 32, 96, 64),
                                 nn.MaxPool2d(3, stride=2, ceil_mode=True),
                                 Inception(480, 192, 96, 208, 16, 48, 64),
                                 Inception(512, 160, 112, 224, 24, 64, 64),
                                 Inception(512, 128, 128, 256, 24, 64, 64),
                                 Inception(512, 112, 144, 288, 32, 64, 64),
                                 Inception(528, 256, 160, 320, 32, 128, 128),
                                 nn.MaxPool2d(3, stride=2, ceil_mode=True),
                                 Inception(832, 256, 160, 320, 32, 128, 128),
                                 Inception(832, 384, 192, 384, 48, 128, 128),
                                 nn.AdaptiveAvgPool2d((1, 1)),
                                 nn.Flatten(),
                                 nn.Linear(1024, 256),
                                 nn.BatchNorm1d(256),
                                 nn.ReLU(inplace=True),
                                 nn.Linear(256, num_classes))

    def forward(self, x):
        return self.net(x)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')  # 何教授方法
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)  # 正态分布赋值
                nn.init.constant_(m.bias, 0)


def GetClassName(class_name):
    xml_file = os.listdir(path_root + '/ILSVRC2012_bbox_train_dogs/' + class_name)[0]
    tree = ET.ElementTree(file=path_root + '/ILSVRC2012_bbox_train_dogs/' + class_name + '/' + xml_file)
    return tree.find('object').find('name').text


path_root = "data/Imagenet2012/"
transform = T.Compose([
    T.RandomResizedCrop(224),
    T.RandomHorizontalFlip(),
    T.ToTensor(),
    T.Normalize([0.4777, 0.4455, 0.3886], [0.2602, 0.2534, 0.2558])])
image_net_train = datasets.ImageFolder(path_root + 'ILSVRC2012_img_train_t3',
                                       transform=transform)
image_net_train_loader = DataLoader(image_net_train, batch_size=100, shuffle=True)


def train(learning_rate=1e-2, n_epochs=10, model_path=None, net=None, num_classes=120, train_offset=0):
    device = (torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
    print(f"Training on device {device}.")
    if net is None:
        net = AlexNet
    if model_path is None:
        model = net(num_classes=num_classes).to(device=device)
    else:
        model = net(num_classes=num_classes).to(device=device)
        model.load_state_dict(torch.load(model_path))
    optimizer = optim.SGD(model.parameters(), learning_rate)
    loss_fn = nn.CrossEntropyLoss()
    for epoch in range(1, n_epochs + 1):
        loss_train = 0.0
        for imgs, labels in image_net_train_loader:
            imgs = imgs.to(device=device)
            labels = labels.to(device=device)
            outputs = model(imgs)
            loss = loss_fn(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            loss_train += loss.item()

        print('{} Epoch: {},Training loss: {}'.format(datetime.datetime.now(), epoch,
                                                      loss_train / len(image_net_train_loader)))
        if not os.path.exists("model/ImageNet/" + net.__name__):
            os.makedirs("model/ImageNet/" + net.__name__)
        torch.save(model.state_dict(),
                   "model/ImageNet/" + net.__name__ + "/epoch_" + str(epoch + train_offset) + ".model")


def predict(image_path, model_path=None, net=None, num_classes=120):
    img_transformer = T.Compose([
        T.Resize((224, 224)),
        T.ToTensor(),
        T.Normalize([0.4777, 0.4455, 0.3886], [0.2602, 0.2534, 0.2558])])
    device = (torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
    print(f"Training on device {device}.")
    img = Image.open(image_path)
    img = img_transformer(img).to(device=device)
    if net is None:
        net = AlexNet
    if model_path is None:
        model = net(num_classes=num_classes).to(device=device)
    else:
        model = net(num_classes=num_classes).to(device=device)
        model.load_state_dict(torch.load(model_path))
    model.eval()
    output = model(img.unsqueeze(0))
    _, predicted = torch.max(output, dim=1)
    return GetClassName(image_net_train.classes[predicted.item()])


if __name__ == "__main__":
    # predict

    # print(predict("img_16.png", "model/ImageNet/ResNet18/epoch_700.model", net=ResNet18))
    # print(predict("img_5.png", "model/ImageNet/GoogLeNet/epoch_12.model", net=GoogLeNet))
    
    # train

    # train(model_path="model/ImageNet/AlexNet/epoch_1120.model", n_epochs=1000)  #4.786365736098516
    # train(model_path="model/ImageNet/ResNet50/epoch_3.model", net=ResNet50, n_epochs=10, train_offset=6)
    # train(model_path="model/ImageNet/ResNet18/epoch_700.model", net=ResNet18, n_epochs=50, train_offset=700)
    train(model_path="model/ImageNet/GoogLeNet/epoch_12.model", net=GoogLeNet, n_epochs=50, train_offset=12)
#

目录结构(数据集使用ImageNet2012)

 

 


版权声明:本文为weixin_41276201原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。