--------------代码部分------------
import numba as nb
import time
# 普通的 for
def add1(t):
start = time.time()
s=0
for i in range(t):
s+=i
onlytime=time.time()-start
return onlytime
# pthon 内置函数
def add2(t):
start = time.time()
s=sum(range(1, t))
onlytime = time.time() - start
return onlytime
# 使用 jit 加速后的 for
@nb.jit()
def add_with_jit(t):
start = time.time()
s = sum(range(1, t))
onlytime = time.time() - start
return onlytime
@nb.jit()
def add_with_jitf(t):
start = time.time()
s = 0
for i in range(t):
s += i
onlytime = time.time() - start
return onlytime
print("普通的for循环{}".format(add1(100000000))) 时间: 5.89318323135376
print("普通的for循环+jit{}".format(add_with_jitf(100000000))) 时间: 0.0381016731262207
print("python内置函数{}".format(add2(100000000))) 时间: 4.128971099853516
print("python内置函数+jit{}".format(add_with_jit(100000000))) 时间: 4.199178218841553
————————————————————————————————————
普通的for循环5.89318323135376
普通的for循环+jit0.0381016731262207
python内置4.128971099853516
python内置+jit4.199178218841553
———————-@jit() 用法和参数————————-
官方源码 个人理解如下
#这个装饰器的作用是将python函数编译成机器语言进行运算
signature 可以是一个函数或者一个列表 @jit(“int32(int32, int32)”) @jit([“int32(int32, int32)”, “float32(float32, float32)”])
locals 可以是个字典映射成numba
target numba利用那个平台进行编译,cpu, gpu, npyufunc, cuda,默认cpu
pipeline_class 通过管道的方式进行编译,个人理解就是把参数集合到一起
——————————–官方代码——————def jit(signature_or_function=None, locals={}, target='cpu', cache=False,
pipeline_class=None, **options):
"""
This decorator is used to compile a Python function into native code.
Args
-----
signature:
The (optional) signature or list of signatures to be compiled.
If not passed, required signatures will be compiled when the
decorated function is called, depending on the argument values.
As a convenience, you can directly pass the function to be compiled
instead.
locals: dict
Mapping of local variable names to Numba types. Used to override the
types deduced by Numba's type inference engine.
target: str
Specifies the target platform to compile for. Valid targets are cpu,
gpu, npyufunc, and cuda. Defaults to cpu.
pipeline_class: type numba.compiler.BasePipeline
The compiler pipeline type for customizing the compilation stages.
options:
For a cpu target, valid options are:
nopython: bool
Set to True to disable the use of PyObjects and Python API
calls. The default behavior is to allow the use of PyObjects
and Python API. Default value is False.
forceobj: bool
Set to True to force the use of PyObjects for every value.
Default value is False.
looplift: bool
Set to True to enable jitting loops in nopython mode while
leaving surrounding code in object mode. This allows functions
to allocate NumPy arrays and use Python objects, while the
tight loops in the function can still be compiled in nopython
mode. Any arrays that the tight loop uses should be created
before the loop is entered. Default value is True.
error_model: str
The error-model affects divide-by-zero behavior.
Valid values are 'python' and 'numpy'. The 'python' model
raises exception. The 'numpy' model sets the result to
*+/-inf* or *nan*. Default value is 'python'.
Returns
--------
A callable usable as a compiled function. Actual compiling will be
done lazily if no explicit signatures are passed.
Examples
--------
The function can be used in the following ways:
1) jit(signatures, target='cpu', **targetoptions) -> jit(function)
Equivalent to:
d = dispatcher(function, targetoptions)
for signature in signatures:
d.compile(signature)
Create a dispatcher object for a python function. Then, compile
the function with the given signature(s).
Example:
@jit("int32(int32, int32)")
def foo(x, y):
return x + y
@jit(["int32(int32, int32)", "float32(float32, float32)"])
def bar(x, y):
return x + y
2) jit(function, target='cpu', **targetoptions) -> dispatcher
Create a dispatcher function object that specializes at call site.
Examples:
@jit
def foo(x, y):
return x + y
@jit(target='cpu', nopython=True)
def bar(x, y):
return x + y
"""
if 'argtypes' in options:
raise DeprecationError(_msg_deprecated_signature_arg.format('argtypes'))
if 'restype' in options:
raise DeprecationError(_msg_deprecated_signature_arg.format('restype'))
if options.get('parallel'):
uns1 = sys.platform.startswith('win32') and sys.version_info[:2] == (2, 7)
uns2 = sys.maxsize <= 2 ** 32
if uns1 or uns2:
msg = ("The 'parallel' target is not currently supported on "
"Windows operating systems when using Python 2.7, or "
"on 32 bit hardware.")
raise RuntimeError(msg)
if cache:
msg = ("Caching is not available when the 'parallel' target is in "
"use. Caching is now being disabled to allow execution to "
"continue.")
warnings.warn(msg, RuntimeWarning)
cache = False
# Handle signature
if signature_or_function is None:
# No signature, no function
pyfunc = None
sigs = None
elif isinstance(signature_or_function, list):
# A list of signatures is passed
pyfunc = None
sigs = signature_or_function
elif sigutils.is_signature(signature_or_function):
# A single signature is passed
pyfunc = None
sigs = [signature_or_function]
else:
# A function is passed
pyfunc = signature_or_function
sigs = None
dispatcher_args = {}
if pipeline_class is not None:
dispatcher_args['pipeline_class'] = pipeline_class
wrapper = _jit(sigs, locals=locals, target=target, cache=cache,
targetoptions=options, **dispatcher_args)
if pyfunc is not None:
return wrapper(pyfunc)
else:
return wrapper