python numba_python加速模块numba的用法

--------------代码部分------------

import numba as nb

import time

# 普通的 for

def add1(t):

start = time.time()

s=0

for i in range(t):

s+=i

onlytime=time.time()-start

return onlytime

# pthon 内置函数

def add2(t):

start = time.time()

s=sum(range(1, t))

onlytime = time.time() - start

return onlytime

# 使用 jit 加速后的 for

@nb.jit()

def add_with_jit(t):

start = time.time()

s = sum(range(1, t))

onlytime = time.time() - start

return onlytime

@nb.jit()

def add_with_jitf(t):

start = time.time()

s = 0

for i in range(t):

s += i

onlytime = time.time() - start

return onlytime

print("普通的for循环{}".format(add1(100000000))) 时间: 5.89318323135376

print("普通的for循环+jit{}".format(add_with_jitf(100000000))) 时间: 0.0381016731262207

print("python内置函数{}".format(add2(100000000))) 时间: 4.128971099853516

print("python内置函数+jit{}".format(add_with_jit(100000000))) 时间: 4.199178218841553

————————————————————————————————————

普通的for循环5.89318323135376

普通的for循环+jit0.0381016731262207

python内置4.128971099853516

python内置+jit4.199178218841553

———————-@jit() 用法和参数————————-

官方源码  个人理解如下

#这个装饰器的作用是将python函数编译成机器语言进行运算

signature 可以是一个函数或者一个列表 @jit(“int32(int32, int32)”)   @jit([“int32(int32, int32)”, “float32(float32, float32)”])

locals  可以是个字典映射成numba

target  numba利用那个平台进行编译,cpu, gpu, npyufunc, cuda,默认cpu

pipeline_class   通过管道的方式进行编译,个人理解就是把参数集合到一起

——————————–官方代码——————def jit(signature_or_function=None, locals={}, target='cpu', cache=False,

pipeline_class=None, **options):

"""

This decorator is used to compile a Python function into native code.

Args

-----

signature:

The (optional) signature or list of signatures to be compiled.

If not passed, required signatures will be compiled when the

decorated function is called, depending on the argument values.

As a convenience, you can directly pass the function to be compiled

instead.

locals: dict

Mapping of local variable names to Numba types. Used to override the

types deduced by Numba's type inference engine.

target: str

Specifies the target platform to compile for. Valid targets are cpu,

gpu, npyufunc, and cuda. Defaults to cpu.

pipeline_class: type numba.compiler.BasePipeline

The compiler pipeline type for customizing the compilation stages.

options:

For a cpu target, valid options are:

nopython: bool

Set to True to disable the use of PyObjects and Python API

calls. The default behavior is to allow the use of PyObjects

and Python API. Default value is False.

forceobj: bool

Set to True to force the use of PyObjects for every value.

Default value is False.

looplift: bool

Set to True to enable jitting loops in nopython mode while

leaving surrounding code in object mode. This allows functions

to allocate NumPy arrays and use Python objects, while the

tight loops in the function can still be compiled in nopython

mode. Any arrays that the tight loop uses should be created

before the loop is entered. Default value is True.

error_model: str

The error-model affects divide-by-zero behavior.

Valid values are 'python' and 'numpy'. The 'python' model

raises exception. The 'numpy' model sets the result to

*+/-inf* or *nan*. Default value is 'python'.

Returns

--------

A callable usable as a compiled function. Actual compiling will be

done lazily if no explicit signatures are passed.

Examples

--------

The function can be used in the following ways:

1) jit(signatures, target='cpu', **targetoptions) -> jit(function)

Equivalent to:

d = dispatcher(function, targetoptions)

for signature in signatures:

d.compile(signature)

Create a dispatcher object for a python function. Then, compile

the function with the given signature(s).

Example:

@jit("int32(int32, int32)")

def foo(x, y):

return x + y

@jit(["int32(int32, int32)", "float32(float32, float32)"])

def bar(x, y):

return x + y

2) jit(function, target='cpu', **targetoptions) -> dispatcher

Create a dispatcher function object that specializes at call site.

Examples:

@jit

def foo(x, y):

return x + y

@jit(target='cpu', nopython=True)

def bar(x, y):

return x + y

"""

if 'argtypes' in options:

raise DeprecationError(_msg_deprecated_signature_arg.format('argtypes'))

if 'restype' in options:

raise DeprecationError(_msg_deprecated_signature_arg.format('restype'))

if options.get('parallel'):

uns1 = sys.platform.startswith('win32') and sys.version_info[:2] == (2, 7)

uns2 = sys.maxsize <= 2 ** 32

if uns1 or uns2:

msg = ("The 'parallel' target is not currently supported on "

"Windows operating systems when using Python 2.7, or "

"on 32 bit hardware.")

raise RuntimeError(msg)

if cache:

msg = ("Caching is not available when the 'parallel' target is in "

"use. Caching is now being disabled to allow execution to "

"continue.")

warnings.warn(msg, RuntimeWarning)

cache = False

# Handle signature

if signature_or_function is None:

# No signature, no function

pyfunc = None

sigs = None

elif isinstance(signature_or_function, list):

# A list of signatures is passed

pyfunc = None

sigs = signature_or_function

elif sigutils.is_signature(signature_or_function):

# A single signature is passed

pyfunc = None

sigs = [signature_or_function]

else:

# A function is passed

pyfunc = signature_or_function

sigs = None

dispatcher_args = {}

if pipeline_class is not None:

dispatcher_args['pipeline_class'] = pipeline_class

wrapper = _jit(sigs, locals=locals, target=target, cache=cache,

targetoptions=options, **dispatcher_args)

if pyfunc is not None:

return wrapper(pyfunc)

else:

return wrapper