matlab 矩阵命令,matlab中的矩阵的基本运算命令

matlab中的矩阵的基本运算命令

(2013-07-19 08:45:49)

1.1 矩阵的表示

1.2 矩阵运算

1.2.14 特殊运算

1.矩阵对角线元素的抽取

函数 diag

格式 X = diag(v,k) %以向量v的元素作为矩阵X的第k条对角线元素,当k=0时,v为X的主对角线;当k>0时,v为上方第k条对角线;当k<0时,v为下方第k条对角线。

X = diag(v) %以v为主对角线元素,其余元素为0构成X。

v = diag(X,k) %抽取X的第k条对角线元素构成向量v。k=0:抽取主对角线元素;k>0:抽取上方第k条对角线元素;k<0抽取下方第k条对角线元素。

v = diag(X) %抽取主对角线元素构成向量v。

2.上三角阵和下三角阵的抽取

函数 tril %取下三角部分

格式 L = tril(X) %抽取X的主对角线的下三角部分构成矩阵L

L = tril(X,k) %抽取X的第k条对角线的下三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。

函数 triu %取上三角部分

格式 U = triu(X) %抽取X的主对角线的上三角部分构成矩阵U

U = triu(X,k) %抽取X的第k条对角线的上三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。

3.矩阵的变维

矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。

(1)“:”变维

(2)Reshape函数变维

格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵B

B = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×…

B = reshape(A,[m n p…]) %同上

B = reshape(A,siz) %由siz决定变维的大小,元素个数与A中元素个数

相同。

(5)复制和平铺矩阵

函数 repmat

格式 B = repmat(A,m,n) %将矩阵A复制m×n块,即B由m×n块A平铺而成。

B = repmat(A,[m n]) %与上面一致

B = repmat(A,[m n p…]) %B由m×n×p×…个A块平铺而成

repmat(A,m,n) %当A是一个数a时,该命令产生一个全由a组成的m×n矩阵。

1.3 矩阵分解

1.3.1 Cholesky分解

函数 chol

格式 R = chol(X) %如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。

[R,p] = chol(X) %不产生任何错误信息,若X为正定阵,则p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。

1.3.2 LU分解

矩阵的三角分解又称LU分解,它的目的是将一个矩阵分解成一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

函数 lu

格式 [L,U] = lu(X) %U为上三角阵,L为下三角阵或其变换形式,满足LU=X。

[L,U,P] = lu(X) %U为上三角阵,L为下三角阵,P为单位矩阵的行变换矩阵,满足LU=PX。

1.3.3 QR分解

将矩阵A分解成一个正交矩阵与一个上三角矩阵的乘积。

函数 qr

格式 [Q,R] = qr(A) %求得正交矩阵Q和上三角阵R,Q和R满足A=QR。

[Q,R,E] = qr(A) %求得正交矩阵Q和上三角阵R,E为单位矩阵的变换形式,R的对角线元素按大小降序排列,满足AE=QR。

[Q,R] = qr(A,0) %产生矩阵A的“经济大小”分解

[Q,R,E] = qr(A,0) %E的作用是使得R的对角线元素降序,且Q*R=A(:, E)。

R = qr(A) %稀疏矩阵A的分解,只产生一个上三角阵R,满足R'*R = A'*A,这种方法计算A'*A时减少了内在数字信息的损耗。

[C,R] = qr(A,b) %用于稀疏最小二乘问题:minimize||Ax-b||的两步解:[C,R] = qr(A,b),x = R\c。

R = qr(A,0) %针对稀疏矩阵A的经济型分解

[C,R] = qr(A,b,0) %针对稀疏最小二乘问题的经济型分解

函数 qrdelete

格式 [Q,R] = qrdelete(Q,R,j) %返回将矩阵A的第j列移去后的新矩阵的qr分解

函数 qrinsert

格式 [Q,R] = qrinsert(Q,R,j,x) %在矩阵A中第j列插入向量x后的新矩阵进行qr分解。若j大于A的列数,表示在A的最后插入列x。

1.3.6 特征值分解

函数 eig

格式 d = eig(A) %求矩阵A的特征值d,以向量形式存放d。

d = eig(A,B) %A、B为方阵,求广义特征值d,以向量形式存放d。

[V,D] = eig(A) %计算A的特征值对角阵D和特征向量V,使AV=VD成立。

[V,D] = eig(A,'nobalance') %当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用。

[V,D] = eig(A,B) %计算广义特征值向量阵V和广义特征值阵D,满足AV=BVD。

[V,D] = eig(A,B,flag) % 由flag指定算法计算特征值D和特征向量V,flag的可能值为:'chol' 表示对B使用Cholesky分解算法,这里A为对称Hermitian矩阵,B为正定阵。'qz' 表示使用QZ算法,这里A、B为非对称或非Hermitian矩阵。

说明 一般特征值问题是求解方程: 解的问题。广义特征值问题是求方程: 解的问题。

1.3.7 奇异值分解

函数 svd

格式 s = svd (X) %返回矩阵X的奇异值向量

[U,S,V] = svd (X) %返回一个与X同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列。

[U,S,V] = svd (X,0) %得到一个“有效大小”的分解,只计算出矩阵U的前n列,矩阵S的大小为n×n。

1.4 线性方程的组的求解

我们将线性方程的求解分为两类:一类是方程组求唯一解或求特解,另一类是方程组求无穷解即通解。可以通过系数矩阵的秩来判断:

若系数矩阵的秩r=n(n为方程组中未知变量的个数),则有唯一解;

若系数矩阵的秩r

线性方程组的无穷解 = 对应齐次方程组的通解+非齐次方程组的一个特解;其特解的求法属于解的第一类问题,通解部分属第二类问题。

1.4.1 求线性方程组的唯一解或特解(第一类问题)

这类问题的求法分为两类:一类主要用于解低阶稠密矩阵 —— 直接法;另一类是解大型稀疏矩阵 —— 迭代法。

1.利用矩阵除法求线性方程组的特解(或一个解)

方程:AX=b

解法:X=A\b

2.利用矩阵的LU、QR和cholesky分解求方程组的解

(1)LU分解:

LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。

则:A*X=b 变成L*U*X=b

所以X=U\(L\b) 这样可以大大提高运算速度。

命令 [L,U]=lu (A)

(2)Cholesky分解

若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即: 其中R为上三角阵。

方程 A*X=b 变成

所以

(3)QR分解

对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形式,即:A=QR

方程 A*X=b 变形成 QRX=b

所以 X=R\(Q\b)

1.4.2 求线性齐次方程组的通解

在Matlab中,函数null用来求解零空间,即满足A•X=0的解空间,实际上是求出解空间的一组基(基础解系)。

格式 z = null % z的列向量为方程组的正交规范基,满足 。

% z的列向量是方程AX=0的有理基

1.4.3 求非齐次线性方程组的通解

非齐次线性方程组需要先判断方程组是否有解,若有解,再去求通解。

因此,步骤为:

第一步:判断AX=b是否有解,若有解则进行第二步

第二步:求AX=b的一个特解

第三步:求AX=0的通解

第四步:AX=b的通解= AX=0的通解+AX=b的一个特解。

1.6 秩与线性相关性

1.6.1 矩阵和向量组的秩以及向量组的线性相关性

矩阵A的秩是矩阵A中最高阶非零子式的阶数;向量组的秩通常由该向量组构成的矩阵来计算。

函数 rank

格式 k = rank(A) %返回矩阵A的行(或列)向量中线性无关个数

k = rank(A,tol) %tol为给定误差

1.6.2 求行阶梯矩阵及向量组的基

行阶梯使用初等行变换,矩阵的初等行变换有三条:

1.交换两行 (第i、第j两行交换)

2.第i行的K倍

3.第i行的K倍加到第j行上去

通过这三条变换可以将矩阵化成行最简形,从而找出列向量组的一个最大无关组,Matlab将矩阵化成行最简形的命令是rref或rrefmovie。

函数 rref或rrefmovie

格式 R = rref(A) %用高斯—约当消元法和行主元法求A的行最简行矩阵R

[R,jb] = rref(A) %jb是一个向量,其含义为:r = length(jb)为A的秩;A(:, jb)为A的列向量基;jb中元素表示基向量所在的列。

[R,jb] = rref(A,tol) %tol为指定的精度

rrefmovie(A) %给出每一步化简的过程

1.7 稀疏矩阵技术

1.7.1 稀疏矩阵的创建

函数 sparse

格式 S = sparse(A) %将矩阵A转化为稀疏矩阵形式,即由A的非零元素和下标构成稀疏矩阵S。若A本身为稀疏矩阵,则返回A本身。

S = sparse(m,n) %生成一个m×n的所有元素都是0的稀疏矩阵

S = sparse(i,j,s) %生成一个由长度相同的向量i,j和s定义的稀疏矩阵S,其中i,j是整数向量,定义稀疏矩阵的元素位置(i,j),s是一个标量或与i,j长度相同的向量,表示在(i,j)位置上的元素。

S = sparse(i,j,s,m,n) %生成一个m×n的稀疏矩阵,(i,j)对应位置元素为si,m = max(i)且n =max(j)。

S = sparse(i,j,s,m,n,nzmax) %生成一个m×n的含有nzmax个非零元素的稀疏矩阵S,nzmax的值必须大于或者等于向量i和j的长度。

1.7.2 将稀疏矩阵转化为满矩阵

函数 full

格式 A=full(S) %S为稀疏矩阵,A为满矩阵。

1.7.3 稀疏矩阵非零元素的索引

函数 find

格式 k = find(x) %按行检索X中非零元素的点,若没有非零元素,将返回空矩阵。

[i,j] = find(X) %检索X中非零元素的行标i和列标j

[i,j,v] = find(X) %检索X中非零元素的行标i和列标j以及对应的元素值v

1.7.4 外部数据转化为稀疏矩阵

函数 spconvert

格式 S=spconvert(D) %D是只有3列或4列的矩阵

说明:先运用load函数把外部数据(.mat文件或.dat文件)装载于MATLAB内存空间中的变量T;T数组的行维为nnz或nnz+1,列维为3(对实数而言)或列维为4(对复数而言);T数组的每一行(以[i,j,Sre,Sim]形式)指定一个稀疏矩阵元素。

1.7.5 基本稀疏矩阵

1.带状(对角)稀疏矩阵

函数 spdiags

格式 [B,d] = spdiags(A) %从矩阵A中提取所有非零对角元素,这些元素保存在矩阵B中,向量d表示非零元素的对角线位置。

B = spdiags(A,d) %从A中提取由d指定的对角线元素,并存放在B中。

A = spdiags(B,d,A) %用B中的列替换A中由d指定的对角线元素,输出稀疏矩阵。

A = spdiags(B,d,m,n) %产生一个m×n稀疏矩阵A,其元素是B中的列元素放

在由d指定的对角线位置上。

2.单位稀疏矩阵

函数 speye

格式 S = speye(m,n) %生成m×n的单位稀疏矩阵

S = speye(n) %生成n×n的单位稀疏矩阵

3.稀疏均匀分布随机矩阵

函数 sprand

格式 R = sprand(S) %生成与S具有相同稀疏结构的均匀分布随机矩阵

R = sprand(m,n,density) %生成一个m×n的服从均匀分布的随机稀疏矩阵,非零元素的分布密度是density。

R = sprand(m,n,density,rc) %生成一个近似的条件数为1/rc、大小为m×n的均匀分布的随机稀疏矩阵。

4.稀疏正态分布随机矩阵

函数 sprandn

格式 R = sprandn(S) %生成与S具有相同稀疏结构的正态分布随机矩阵。

R = sprandn(m,n,density) %生成一个m×n的服从正态分布的随机稀疏矩阵,非零元素的分布密度是density。

R = sprandn(m,n,density,rc) %生成一个近似的条件数为1/rc、大小为m×n的均匀分布的随机稀疏矩阵。

5.稀疏对称随机矩阵

函数 sprandsym

格式 R = sprandsym(S) %生成稀疏对称随机矩阵,其下三角和对角线与S具有相同的结构,其元素服从均值为0、方差为1的标准正态分布。

R = sprandsym(n,density) %生成n×n的稀疏对称随机矩阵,矩阵元素服从正态分布,分布密度为density。

R = sprandsym(n,density,rc) %生成近似条件数为1/rc的稀疏对称随机矩阵

R = sprandsym(n,density,rc,kind) %生成一个正定矩阵,参数kind取值为kind=1表示矩阵由一正定对角矩阵经随机Jacobi旋转得到,其条件数正好为1/rc;kind=2表示矩阵为外积的换位和,其条件数近似等于1/rc;kind=3表示生成一个与矩阵S结构相同的稀疏随机矩阵,条件数近似为1/rc ,density被忽略。

1.7.6 稀疏矩阵的运算

1.稀疏矩阵非零元素的个数

函数 nnz

格式 n = nnz(X) %返回矩阵X中非零元素的个数

2.稀疏矩阵的非零元素

函数 nonzeros

格式 s = nonzeros(A) %返回矩阵A中非零元素按列顺序构成的列向量

3.稀疏矩阵非零元素的内存分配

函数 nzmax

格式 n = nzmax(S) %返回非零元素分配的内存总数n

4.稀疏矩阵的存贮空间

函数 spalloc

格式 S = spalloc(m,n,nzmax) %产生一个m×n阶只有nzmax个非零元素的稀疏矩阵,这样可以有效减少存贮空间和提高运算速度。

5.稀疏矩阵的非零元素应用

函数 spfun

格式 f = spfun('function',S) %用S中非零元素对函数'function'求值,如果'function'不是对稀疏矩阵定义的,同样可以求值。

6.把稀疏矩阵的非零元素全换为1

函数 spones

格式 R = spones(S) %将稀疏矩阵S中的非零元素全换为1

1.7.7 画稀疏矩阵非零元素的分布图形

函数 spy

格式 spy(S) %画出稀疏矩阵S中非零元素的分布图形。S也可以是满矩阵。

spy(S,markersize) % markersize为整数,指定点阵大小。

spy(S,'LineSpec') %'LineSpec'指定绘图标记和颜色

spy(S,'LineSpec',markersize) %参数与上面相同

分享:

a4c26d1e5885305701be709a3d33442f.png喜欢

0

a4c26d1e5885305701be709a3d33442f.png赠金笔

加载中,请稍候......

评论加载中,请稍候...

发评论

登录名: 密码: 找回密码 注册记住登录状态

昵   称:

评论并转载此博文

a4c26d1e5885305701be709a3d33442f.png

发评论

以上网友发言只代表其个人观点,不代表新浪网的观点或立场。