SparkSql的udaf函数

SparkSql的udaf函数,可以实现多进一出的效果,下面我给大家写了一个求平均值的例子

pom如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.wy</groupId>
    <artifactId>zoukao2</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.8</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>
    </dependencies>


    <build>
        <pluginManagement>
            <plugins>
                <!-- 编译scala的插件 -->
                <plugin>
                    <groupId>net.alchim31.maven</groupId>
                    <artifactId>scala-maven-plugin</artifactId>
                    <version>3.2.2</version>
                </plugin>
                <!-- 编译java的插件 -->
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.5.1</version>
                </plugin>
            </plugins>
        </pluginManagement>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <executions>
                    <execution>
                        <phase>compile</phase>
                        <goals>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>


            <!-- 打jar插件 -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

代码如下:

package com.sparksql

import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._

/**
* SparkSql的udaf函数需要继承UserDefinedAggregateFunction类并实现其中的方法
*/
object UserDefinedFunction2 extends UserDefinedAggregateFunction{
  
  //这个是在指定输入数据的类型,注意顺序
  override def inputSchema: StructType = StructType(StructField("salary", LongType) :: Nil)

  //这个是函数内部聚合时用的,total是总量,cnt是个数,注意顺序
  override def bufferSchema: StructType = StructType(StructField("total",LongType) :: StructField("cnt", LongType) :: Nil)

  //指定UDAF函数计算后返回的结果类型
  override def dataType: DataType = DoubleType

  //确保一致性 一般直接用true就可以,用以标记针对给定的一组输入,UDAF是否总是生成相同的结果
  override def deterministic: Boolean = true

  //初始化函数,这里初始化的是函数内部聚合时用的变量,也就是前面写的bufferSchema
  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer(0) = 0L
    buffer(1) = 0L
  }

  //聚合方法,这个方法会被多次调用,用来处理函数接收的数据,buffer是聚合用的变量,input是每行输入的数据
  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
	//判断一下输入的数据是正常的,有数据的
    if (!input.isNullAt(0)) {
      buffer(0) = buffer.getLong(0) +input.getLong(0) //这里的取值方法和我们写原生java连接数据库时有些相似,一个意思
      buffer(1) = buffer.getLong(1) + 1 //个数加1
    }
  }

  //合并结果方法,因为SparkSql在集群中运行的时候任务会被分配开,最后要合并
  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1(0) = buffer1.getLong(0) +buffer2.getLong(0) //所有节点的total合并
    buffer1(1) = buffer1.getLong(1) +buffer2.getLong(1) //所有节点的cnt合并
  }

  //处理最终结果的方法,函数的最终值也在这个方法返回
  override def evaluate(buffer: Row): Any = {
    buffer.getLong(0).toDouble / buffer.getLong(1)
  }

  def main(args: Array[String]): Unit = {
    val spark: SparkSession = SparkSession
      .builder()
      .master("local")
      .appName("DataFrameFromStuctType")
      .getOrCreate()

    Logger.getLogger("org").setLevel(Level.ERROR)
    
    val empoyeeDF: DataFrame = spark.read.json("C:\\Users\\Desktop\\employees.json")

    empoyeeDF.createOrReplaceTempView("employee2")
    spark.udf.register("myavg",UserDefinedFunction2)

    spark.sql("select myavg(salary) avgsalary from employee2").show()

  }
}




版权声明:本文为dudadudadd原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。