欧拉计划之——和的平方与平方的和之差
和的平方与平方的和之差
前十个自然数的平方的和为:
1 2 + 2 2 + 3 2 + ⋯ + 1 0 2 = 385 1^2+2^2+3^2+⋯+10^2=38512+22+32+⋯+102=385
而前十个自然数和的平方为:
( 1 + 2 + 3 + ⋯ + 10 ) 2 = 5 5 2 = 3025 (1+2+3+⋯+10)^2=55^2=3025(1+2+3+⋯+10)2=552=3025
两者的差为3025−385=2640,求前一百个自然数的和的平方与平方的和之间的差值。
分析:
此题可以直接使用求和公式求解,则:
S ( n ) = ( n ( n + 1 ) 2 ) 2 − n ( n + 1 ) ( 2 n + 1 ) 6 = ( n − 1 ) n ( n + 1 ) ( 3 n + 2 ) 12 S(n)=(\frac{n(n+1)}{2})^2−\frac{n(n+1)(2n+1)}{6}=\frac{(n−1)n(n+1)(3n+2)}{12}S(n)=(2n(n+1))2−6n(n+1)(2n+1)=12(n−1)n(n+1)(3n+2)
代入S ( 100 ) S_{(100)}S(100)可以直接算出结果,代码如下:
def main(n):
ans = n * (n - 1) * (n + 1) * (3 * n + 2) / 12
return int(ans)
print(main(100))
运行结果:25164150
返回顶部
平方和&立方和公式推导
平方和公式推导
∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i = 1}^n i^2= \frac{n(n+1)(2n+1)}{6}∑i=1ni2=6n(n+1)(2n+1)
证法一(归纳法):
n = 1:1 = 1 ( 1 + 1 ) ( 2 × 1 + 1 ) 6 1 = \frac{1(1+1)(2×1+1)}{6}1=61(1+1)(2×1+1)
n = 2:1 + 2 2 = 2 ( 2 + 1 ) ( 2 × 2 + 1 ) 6 = 5 1+2^2 = \frac{2(2+1)(2×2+1)}{6}=51+22=62(2+1)(2×2+1)=5
⋯ ⋯ \cdots \cdots⋯⋯
n = k(k ∈ Z , k ≥ 2 k \in Z,k ≥2k∈Z,k≥2):∑ i = 1 k i 2 = k ( k + 1 ) ( 2 k + 1 ) 6 \sum_{i = 1}^k i^2= \frac{k(k+1)(2k+1)}{6}∑i=1ki2=6k(k+1)(2k+1)
n = k+1:
( ∑ i = 1 k + 1 i 2 ) = ( ∑ i = 1 k i 2 ) + ( k + 1 ) 2 = k ( k + 1 ) ( 2 k + 1 ) 6 + ( k + 1 ) 2 = ( k + 1 ) ( 2 k 2 + k + 6 k + 6 ) 6 = ( k + 1 ) ( 2 k 2 + 7 k + 6 ) 6 = ( k + 1 ) ( k + 2 ) ( 2 k + 3 ) 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} (\sum_{i = 1}^{k+1} i^2) &= (\sum_{i = 1}^k i^2)+(k+1)^2 \\ &= \frac{k(k+1)(2k+1)}{6}+(k+1)^2 \\ &= \frac{(k+1)(2k^2+k+6k+6)}{6}\\ &= \frac{(k+1)(2k^2+7k+6)}{6}\\ &= \frac{(k+1)(k+2)(2k+3)}{6}\\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned}(i=1∑k+1i2)=(i=1∑ki2)+(k+1)2=6k(k+1)(2k+1)+(k+1)2=6(k+1)(2k2+k+6k+6)=6(k+1)(2k2+7k+6)=6(k+1)(k+2)(2k+3)=6n(n+1)(2n+1)
也满足公式。
根据数学归纳法,对于一切自然数,( ∑ i = 1 n i 2 ) = n ( n + 1 ) ( 2 n + 1 ) 6 (\sum_{i = 1}^n i^2) = \frac{n(n+1)(2n+1)}{6}(∑i=1ni2)=6n(n+1)(2n+1)成立。
证法二:
利用恒等式( n + 1 ) 3 = n 3 + 3 n 2 + 3 n + 1 (n+1)^3 = n^3+3n^2+3n+1(n+1)3=n3+3n2+3n+1
( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 n 3 − ( n − 1 ) 2 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 … … 2 3 − 1 3 = 3 × 1 2 + 3 × 1 + 1 \begin{aligned} (n+1)^3 - n^3 &= 3n^2 + 3n + 1 \\ n^3 - (n-1)^2 &= 3(n-1)^2 + 3(n-1) + 1 \\ &…… \\ 2^3 - 1^3 &= 3×1^2 + 3×1 + 1 \end{aligned}(n+1)3−n3n3−(n−1)223−13=3n2+3n+1=3(n−1)2+3(n−1)+1……=3×12+3×1+1
两边求和得:
( n + 1 ) 3 − 1 = 3 ( ∑ i = 1 n i 2 ) + 3 ( 1 + 2 + … … + n ) + n ∑ i = 1 n i 2 = ( ( n + 1 ) 3 − 1 ) − 3 n ( n + 1 ) / 2 − n 3 = ( 2 n 3 + 6 n 2 + 6 n ) − 3 n 2 − 3 n − 2 n 6 = 2 n 3 + 3 n 2 + n 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} (n+1)^3 - 1 &= 3(\sum_{i = 1}^n i^2) + 3(1+2+……+n) + n \\ \sum_{i = 1}^n i^2 &= \frac{((n+1)^3-1) - 3n(n+1)/2 - n}{3} \\ &= \frac{(2n^3+6n^2+6n) - 3n^2 -3n - 2n}{6} \\ &= \frac{2n^3+3n^2+n}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned}(n+1)3−1i=1∑ni2=3(i=1∑ni2)+3(1+2+……+n)+n=3((n+1)3−1)−3n(n+1)/2−n=6(2n3+6n2+6n)−3n2−3n−2n=62n3+3n2+n=6n(n+1)(2n+1)
证法三:
利用恒等式n ( n + 1 ) = n ( n + 1 ) ( n + 2 ) − ( n − 1 ) n ( n + 1 ) 3 n(n+1) = \frac{n(n+1)(n+2) - (n-1)n(n+1)}{3}n(n+1)=3n(n+1)(n+2)−(n−1)n(n+1)
∑ i = 1 n i 2 = 1 × ( 2 − 1 ) + 2 ( 3 − 1 ) + … … + n ( n + 1 − 1 ) = 1 × 2 + 2 × 3 + … … + n ( n + 1 ) − ( 1 + 2 + … … + n ) = 1 × 2 × 3 − 0 × 1 × 2 3 + 2 × 3 × 4 − 1 × 2 × 3 3 + … … + n × ( n + 1 ) × ( n + 2 ) − ( n − 1 ) × n × ( n + 1 ) 3 − n ( n + 1 ) 2 = n × ( n + 1 ) × ( n + 2 ) 3 − n ( n + 1 ) 2 = n × ( n + 1 ) × 2 ( n + 2 ) − 3 n ( n + 1 ) 6 = n × ( n + 1 ) × ( 2 n + 4 − 3 ) 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} \sum_{i = 1}^n i^2 &= 1×(2-1)+2(3-1)+……+n(n+1-1) \\ &= 1×2+2×3+……+n(n+1) - (1+2+……+n) \\ &= \frac{1×2×3-0×1×2}{3} + \frac{2×3×4-1×2×3}{3} +……\\ &+ \frac{n×(n+1)×(n+2)-(n-1)×n×(n+1)}{3} - \frac{n(n+1)}{2} \\ &= \frac{n×(n+1)×(n+2)}{3} - \frac{n(n+1)}{2}\\ &= \frac{n×(n+1)×2(n+2) - 3n(n+1)}{6} \\ &= \frac{n×(n+1)×(2n+4-3)}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned}i=1∑ni2=1×(2−1)+2(3−1)+……+n(n+1−1)=1×2+2×3+……+n(n+1)−(1+2+……+n)=31×2×3−0×1×2+32×3×4−1×2×3+……+3n×(n+1)×(n+2)−(n−1)×n×(n+1)−2n(n+1)=3n×(n+1)×(n+2)−2n(n+1)=6n×(n+1)×2(n+2)−3n(n+1)=6n×(n+1)×(2n+4−3)=6n(n+1)(2n+1)
证法四(排列组合法):
首先,证明组合C n + 1 2 = C 1 1 + C 2 1 + … … + C n 1 C_{n+1}^2 = C_1^1+C_2^1+……+C_n^1Cn+12=C11+C21+……+Cn1
从n+1个里面选2个的情形:
- 假设先选第1个(其它也可以,仅为看着方便),剩下从n个里面选1个,即C n 1 C_n^1Cn1;
- 假设选第2个,同时不能再选第1个(会重复),剩下从n-1个里面选1个,即C n − 1 1 C_{n-1}^1Cn−11;
- ……
- 假设选第n个,同时不能再选前面的,剩下从最后1个里面选1个,即C 1 1 C_1^1C11
得到证明。
同样的方法,可以证明组合C n + 1 3 = C 2 2 + C 3 2 + … … + C n 2 C_{n+1}^3 = C_2^2+C_3^2+……+C_n^2Cn+13=C22+C32+……+Cn2
由于k 2 = k ( k − 1 ) + k = 2 C k 2 + C k 1 k^2 = k(k-1) + k = 2C_k^2 + C_k^1k2=k(k−1)+k=2Ck2+Ck1
当k = 1时,理论上不可能从1个中挑出2个,可以认为C 1 2 = 0 C_1^2 = 0C12=0
∑ i = 1 n i 2 = 2 ( C 2 2 + C 3 2 + … … + C n 2 ) + ( C 1 1 + C 2 1 + … … + C n 1 ) = 2 C n + 1 3 + C n + 1 2 = 2 × ( n + 1 ) n ( n − 1 ) 3 × 2 × 1 + ( n + 1 ) n 2 × 1 = ( n + 1 ) n ( 2 n − 2 + 3 ) 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} \sum_{i = 1}^n i^2 &= 2(C_2^2+C_3^2+……+C_n^2) + (C_1^1+C_2^1+……+C_n^1) \\ &= 2C_{n+1}^3 + C_{n+1}^2 \\ &= 2×\frac{(n+1)n(n-1)}{3×2×1} + \frac{(n+1)n}{2×1} \\ &= \frac{(n+1)n(2n-2+3)}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned}i=1∑ni2=2(C22+C32+……+Cn2)+(C11+C21+……+Cn1)=2Cn+13+Cn+12=2×3×2×1(n+1)n(n−1)+2×1(n+1)n=6(n+1)n(2n−2+3)=6n(n+1)(2n+1)
证法五:
利用恒等式n 2 = ( 2 n − 1 + 1 ) × n 2 = 1 + 3 + 5 + … … + ( 2 n − 1 ) n^2 = \frac{(2n - 1 + 1)×n}{2} = 1+3+5+……+(2n -1)n2=2(2n−1+1)×n=1+3+5+……+(2n−1)
1 2 = 1 2 2 = 1 + 3 3 2 = 1 + 3 + 5 … … n 2 = 1 + 3 + 5 + … … + ( 2 n − 1 ) \begin{aligned} &1^2 = 1 \\ &2^2 = 1 + 3 \\ &3^2 = 1 + 3 + 5\\ &…… \\ &n^2 = 1 + 3 + 5 + …… + (2n - 1) \end{aligned}12=122=1+332=1+3+5……n2=1+3+5+……+(2n−1)
等式两边同时求和得:
∑ i = 1 n i 2 = n × [ 1 + 3 + 5 + … … + ( 2 n − 1 ) ] − [ 0 × 1 + 1 × 3 + 2 × 5 + … … + ( n − 1 ) ( 2 n − 1 ) ] = n × n 2 − ∑ i = 1 n [ ( i − 1 ) ( 2 i − 1 ) ] = n 3 − ∑ i = 1 n [ ( i − 1 ) ( 2 ( i − 1 ) + 1 ) ] = n 3 − 2 ∑ i = 1 n ( i − 1 ) 2 − ∑ i = 1 n ( i − 1 ) = n 3 − 2 × ( ( ∑ i = 1 n i 2 ) − n 2 ) − n ( n − 1 ) 2 两 边 移 动 后 : 3 × ∑ i = 1 n i 2 = n 3 + 2 n 2 − n ( n − 1 ) 2 ∑ i = 1 n i 2 = 2 n 3 + 4 n 2 − n 2 + n 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} \sum_{i = 1}^n i^2 &= n×[1 + 3 + 5 + …… + (2n -1)] - [0×1+1×3+2×5+……+(n - 1)(2n - 1)] \\ &= n×n^2 - \sum_{i = 1}^n [ (i - 1)(2i - 1) ] \\ &= n^3 - \sum_{i = 1}^n [ (i - 1)(2(i - 1) + 1) ] \\ &= n^3 - 2\sum_{i = 1}^n (i - 1)^2 - \sum_{i = 1}^n (i - 1) \\ &= n^3 - 2×((\sum_{i = 1}^n i^2) - n^2) - \frac{n(n-1)}{2} \\ 两边移动后:\\ 3×\sum_{i = 1}^n i^2 &= n^3 +2n^2 - \frac{n(n-1)}{2} \\ \sum_{i = 1}^n i^2 &= \frac{2n^3+4n^2-n^2+n}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned}i=1∑ni2两边移动后:3×i=1∑ni2i=1∑ni2=n×[1+3+5+……+(2n−1)]−[0×1+1×3+2×5+……+(n−1)(2n−1)]=n×n2−i=1∑n[(i−1)(2i−1)]=n3−i=1∑n[(i−1)(2(i−1)+1)]=n3−2i=1∑n(i−1)2−i=1∑n(i−1)=n3−2×((i=1∑ni2)−n2)−2n(n−1)=n3+2n2−2n(n−1)=62n3+4n2−n2+n=6n(n+1)(2n+1)
返回顶部
立方和公式推导
∑ i = 1 n i 3 = ( ∑ i = 1 n ) 2 \sum_{i = 1}^n i^3= (\sum_{i=1}^n)^2∑i=1ni3=(∑i=1n)2
证法一:(归纳法)
n = 1:1 3 = 1 2 1^3 = 1^213=12
n = 2:1 3 + 2 3 = ( 1 + 2 ) 2 = 9 1^3+2^3 = (1+2)^2 = 913+23=(1+2)2=9
n = 3:1 3 + 2 3 + 3 3 = ( 1 + 2 + 3 ) 2 = 36 1^3+2^3 + 3^3= (1+2+3)^2 = 3613+23+33=(1+2+3)2=36
……
n = k(k ∈ Z , k ≥ 2 k \in Z,k ≥2k∈Z,k≥2):∑ i = 1 k i 3 = ( ∑ i = 1 k i ) 2 = ( k ( k + 1 ) 2 ) 2 \sum_{i = 1}^k i^3= (\sum_{i = 1}^k i)^2 = (\frac{k(k+1)}{2})^2∑i=1ki3=(∑i=1ki)2=(2k(k+1))2
n = k+1:
∑ i = 1 k + 1 i 3 = ( ∑ i = 1 k i 3 ) + ( k + 1 ) 3 = ( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 3 = ( ( k + 1 ) 2 ) 2 × ( k 2 + 4 ( k + 1 ) ) = ( ( k + 1 ) ( k + 2 ) 2 ) 2 = ( ∑ i = 1 k + 1 i ) 2 \begin{aligned} \sum_{i = 1}^{k+1} i^3 &= (\sum_{i = 1}^k i^3) + (k+1)^3 \\ &= (\frac{k(k+1)}{2})^2 + (k+1)^3 \\ &= (\frac{(k+1)}{2})^2 × (k^2 + 4(k+1)) \\ &= (\frac{(k+1)(k+2)}{2})^2 = (\sum_{i = 1}^{k+1} i)^2 \end{aligned}i=1∑k+1i3=(i=1∑ki3)+(k+1)3=(2k(k+1))2+(k+1)3=(2(k+1))2×(k2+4(k+1))=(2(k+1)(k+2))2=(i=1∑k+1i)2
也满足公式。
根据数学归纳法,对于一切自然数,∑ i = 1 n i 3 = ( ∑ i = 1 n ) 2 \sum_{i = 1}^n i^3= (\sum_{i=1}^n)^2∑i=1ni3=(∑i=1n)2成立。
证法二:
利用恒等式( n + 1 ) 4 = n 4 + 4 n 3 + 6 n 2 + 4 n + 1 (n+1)^4 = n^4 + 4n^3 + 6n^2+4n+1(n+1)4=n4+4n3+6n2+4n+1
( n + 1 ) 4 − n 4 = 4 n 3 + 6 n 2 + 4 n + 1 n 4 − ( n − 1 ) 4 = 4 ( n − 1 ) 3 + 6 ( n − 1 ) 2 + 4 ( n − 1 ) + 1 … … 2 4 − 1 4 = 4 × 1 3 + 6 × 1 2 + 4 × 1 + 1 \begin{aligned} (n+1)^4 - n^4 &= 4n^3 + 6n^2 +4n + 1 \\ n^4 - (n-1)^4 &= 4(n-1)^3 + 6(n-1)^2 +4(n-1) + 1 \\ &…… \\ 2^4 - 1^4 &= 4×1^3 + 6×1^2 +4×1 + 1 \\ \end{aligned}(n+1)4−n4n4−(n−1)424−14=4n3+6n2+4n+1=4(n−1)3+6(n−1)2+4(n−1)+1……=4×13+6×12+4×1+1
两边求和得:
( n + 1 ) 4 − 1 = 4 ( ∑ i = 1 n i 3 ) + 6 ( ∑ i = 1 n i 2 ) + 4 ( ∑ i = 1 n i ) + n ∑ i = 1 n i 3 = ( ( n + 1 ) 4 − 1 ) − 6 × n ( n + 1 ) ( 2 n + 1 ) 6 − 4 × n ( n + 1 ) 2 − n 4 = n ( n + 2 ) ( n 2 + 2 n + 2 ) − n ( n + 1 ) ( 2 n + 1 ) − 2 n ( n + 1 ) − n 4 = n ( n 3 + 4 n 2 + 6 n + 4 − 2 n 2 − 3 n − 1 − 2 n − 2 − 1 ) 4 = n 2 ( n + 1 ) 2 4 = ( ∑ i = 1 n i ) 2 \begin{aligned} (n+1)^4 - 1 &= 4(\sum_{i = 1}^n i^3) + 6(\sum_{i = 1}^n i^2) + 4(\sum_{i = 1}^n i) + n \\ \sum_{i = 1}^n i^3 &= \frac{((n+1)^4-1) - 6×\frac{n(n+1)(2n+1)}{6} - 4× \frac{n(n+1)}{2} - n}{4} \\ &= \frac{n(n+2)(n^2+2n+2) - n(n+1)(2n+1) -2n(n+1) - n}{4} \\ &= \frac{n(n^3+4n^2+6n+4-2n^2-3n-1-2n-2-1)}{4} \\ &= \frac{n^2(n+1)^2}{4} = (\sum_{i = 1}^n i)^2 \end{aligned}(n+1)4−1i=1∑ni3=4(i=1∑ni3)+6(i=1∑ni2)+4(i=1∑ni)+n=4((n+1)4−1)−6×6n(n+1)(2n+1)−4×2n(n+1)−n=4n(n+2)(n2+2n+2)−n(n+1)(2n+1)−2n(n+1)−n=4n(n3+4n2+6n+4−2n2−3n−1−2n−2−1)=4n2(n+1)2=(i=1∑ni)2
证法三:
1 = 0 + 1 2 + 3 + 4 = 1 + 2 3 = 9 5 + 6 + 7 + 8 + 9 = 2 3 + 3 3 = 35 … … \begin{aligned} 1 &= 0 + 1 \\ 2 + 3 + 4 &= 1 + 2^3 = 9\\ 5 + 6 + 7 + 8 + 9 &= 2^3 + 3^3 = 35 \\ &…… \\ \end{aligned}12+3+45+6+7+8+9=0+1=1+23=9=23+33=35……
可以证明:
∑ i = m 2 + 1 ( m + 1 ) 2 i = ( ( m + 1 ) 2 − m 2 ) ( ( m + 1 ) 2 + m 2 + 1 ) 2 = 2 m 3 + 3 m 2 + 3 m + 1 = m 3 + ( m 3 + 3 m 2 + 3 m + 1 ) = m 3 + ( m + 1 ) 3 \begin{aligned} \sum_{i=m^2+1}^{(m+1)^2} i &= \frac{((m+1)^2 - m^2)((m+1)^2 + m^2 +1)}{2} \\ &=2m^3+3m^2+3m+1 \\ &=m^3 + (m^3 + 3m^2 +3m +1) \\ &=m^3 + (m+1)^3 \end{aligned}i=m2+1∑(m+1)2i=2((m+1)2−m2)((m+1)2+m2+1)=2m3+3m2+3m+1=m3+(m3+3m2+3m+1)=m3+(m+1)3
等式两边分别从1加到m:
1 + ( 2 + 3 + 4 ) + ( 5 + 6 + 7 + 8 + 9 ) + … … + ∑ i = m 2 + 1 ( m + 1 ) 2 i = 2 × ( 1 3 + 2 3 + 3 3 + … … + m 3 ) + ( m + 1 ) 3 ( ∑ i = 1 ( m + 1 ) 2 i ) − ( m + 1 ) 3 = 2 ∑ i = 1 m i 3 ∑ i = 1 m i 3 = ( m + 1 ) 2 ( ( m + 1 ) 2 + 1 ) 2 − ( m + 1 ) 3 2 = ( m + 1 ) 2 ( ( m + 1 ) 2 + 1 − 2 ( m + 1 ) ) 4 = ( m ( m + 1 ) 2 ) 2 = ( ∑ i = 1 m i ) 2 \begin{aligned} 1+(2+3+4)+(5+6+7+8+9)+……+\sum_{i=m^2+1}^{(m+1)^2} i &= 2 × (1^3+2^3+3^3+……+m^3) + (m+1)^3 \\ (\sum_{i=1}^{(m+1)^2} i) - (m+1)^3 &= 2\sum_{i=1}^m i^3 \\ \sum_{i=1}^m i^3 &= \frac{\frac{(m+1)^2((m+1)^2+1) }{2} - (m+1)^3}{2} \\ &=\frac{(m+1)^2((m+1)^2+1 - 2(m+1)) }{4} \\ &=(\frac{m(m+1)}{2})^2 = (\sum_{i=1}^m i)^2 \end{aligned}1+(2+3+4)+(5+6+7+8+9)+……+i=m2+1∑(m+1)2i(i=1∑(m+1)2i)−(m+1)3i=1∑mi3=2×(13+23+33+……+m3)+(m+1)3=2i=1∑mi3=22(m+1)2((m+1)2+1)−(m+1)3=4(m+1)2((m+1)2+1−2(m+1))=(2m(m+1))2=(i=1∑mi)2
欢迎关注,敬请点赞!
返回顶部