并发编程原子类学习

目录

 

原子类(CAS原理)

原子类概况

参考与说明


原子类(CAS原理)

对于简单的原子性问题,还有一种无锁方案。Java SDK 并发包将这种无锁方案封装提炼之后,实现了一系列的原子类。

无锁方案相对互斥锁方案,最大的好处就是性能。互斥锁方案为了保证互斥性,需要执行加锁、解锁操作,而加锁、解锁操作本身就消耗性能;同时拿不到锁的线程还会进入阻塞状态,进而触发线程切换,线程切换对性能的消耗也很大。 相比之下,无锁方案则完全没有加锁、解锁的性能消耗,同时还能保证互斥性,既解决了问题,又没有带来新的问题,可谓绝佳方案 

 原子类性能高的秘密很简单,硬件支持而已。CPU 为了解决并发问题,提供了 CAS 指令(CAS,全称是 Compare And Swap,即“比较并交换”)。CAS 指令包含 3 个参数:共享变量的内存地址 A、用于比较的值 B 和共享变量的新值 C;并且只有当内存中地址 A 处的值等于 B 时,才能将内存中地址 A 处的值更新为新值 C。作为一条 CPU 指令,CAS 指令本身是能够保证原子性的。

 使用 CAS 来解决并发问题,一般都会伴随着自旋,而所谓自旋,其实就是循环尝试。例如,实现一个线程安全的count += 1操作,“CAS+ 自旋”的实现方案如下所示:


class SimulatedCAS{
  volatile int count;
  // 实现count+=1
  addOne(){
    do {
      oldValue=count
      newValue = oldValue+1; //①
    }while(oldValue !=
      cas(oldValue,newValue) //②
  }
  // 模拟实现CAS,仅用来帮助理解
  synchronized int cas(
    int expect, int newValue){
    // 读目前count的值
    int curValue = count;
    // 比较目前count值是否==期望值
    if(curValue == expect){
      // 如果是,则更新count的值
      count= newValue;
    }
    // 返回写入前的值
    return curValue;
  }
}

首先计算 newValue = count+1,如果 cas(oldValue,newValue) 返回的值不等于 oldValue,则意味着线程在执行完代码①处之后,执行代码②处之前,count 的值被其他线程更新过。那此时该怎么处理呢?可以采用自旋方案,就像下面代码中展示的,可以重新读 count 最新的值来计算 newValue 并尝试再次更新,直到成功。

 Java 提供的原子类里面 CAS 一般被实现为 compareAndSet(),compareAndSet() 的语义和 CAS 指令的语义的差别仅仅是返回值不同而已,compareAndSet() 里面如果更新成功,则会返回 true,否则返回 false。

下面这段抽象后的代码片段,它在很多无锁程序中经常出现,好好体会。


do {
  // 获取当前值
  oldV = xxxx;
  // 根据当前值计算新值
  newV = ...oldV...
}while(!compareAndSet(oldV,newV);

原子类概况

 

待续,,,,,,,,,,,,,,,,,,

 

参考与说明

参考:极客时间《Java并发编程实战》:https://time.geekbang.org/column/article/90515

说明:本文记录的是极客时间课程学习笔记,建议阅读原文(见上述链接);如有侵权,请联系我删除!