pytorch训练自己的图片数据集

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from PIL import Image
import pandas as pd
import os
from torchvision import models, transforms
# from logger import Logger
import torch
import time
import numpy as np

num_categories = 2
images_folder_train = r"C:\Users\hasee\Pictures\分类\train"+'\\'
images_folder_val = r"C:\Users\hasee\Pictures\分类\val"+'\\'

image_extentions = ['.png', '.PNG', '.jpg', '.JPG']
class ImageDataset(torch.utils.data.Dataset):

    # def __init__(self, annotations_file, images_folder, transforms=None):
    def __init__(self, images_folder, transform=None):
        images = []
        labels = []
        for dirname in os.listdir(images_folder):
            for filename in os.listdir(images_folder+dirname):
                if any(filename.endswith(extension) for extension in image_extentions):
                    images.append((dirname+'\\'+filename,int(dirname)))

        self.images_folder = images_folder
        self.transforms = transform
        self.images = images
        # print('transforms', transforms)



    def __len__(self):
        return len(self.images)

    def __getitem__(self, index):
        filename,label = self.images[index]
        # try:
        img= Image.open(os.path.join(self.images_folder, filename)).convert('RGB')
        # except:
        #     return torch.zeros((3, 256, 256))
        # if self.transform is not None:
        img = self.transforms(img)
        return img,label

transform = transforms.Compose(
    [transforms.Resize((224, 224)),transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_data=ImageDataset(images_folder =images_folder_train,
                  transform=transform)
test_data=ImageDataset(images_folder =images_folder_train,
                 transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=4, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=4)
dataset_sizes = train_data.__len__()

# device = torch.device("cuda:1" )
device = torch.device("cpu")

def initialize_model(model_name, num_categories, finetuning=False, pretrained=True):

    if model_name == 'resnet18':
        model = models.resnet18(pretrained=pretrained)
        if finetuning == True:
            pass
        else:
            for param in model.parameters():
                param.requires_grad = False
        num_ftrs = model.fc.in_features
        model.fc = nn.Linear(num_ftrs, num_categories)
        model = model.to(device)
    elif model_name == 'resnet34':
        model = models.resnet34(pretrained=pretrained)
        if finetuning == True:
            pass
        else:
            for param in model.parameters():
                param.requires_grad = False
                #param.requires_grad = False:屏蔽预训练模型的权重,只训练全连接层的权重
        num_ftrs = model.fc.in_features
        model.fc = nn.Linear(num_ftrs, num_categories)
        model = model.to(device)
    else:
        model = None
    return model

def train_model(model, criterion, optimizer, scheduler, pre_epoch, num_epochs):
    since = time.time()
    best_acc = 0.0

    for epoch in range(pre_epoch, num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train()
            else:
                model.eval()

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for batch_idx, (inputs, targets) in enumerate(train_loader):
                inputs, labels = inputs.to(device), targets.to(device)
                optimizer.zero_grad()
                #torch.set_grad_enabled(False)
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    #torch.max(a,1) 返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引)
                    #0为行索引
                    loss = criterion(outputs, labels)

                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes
            # logger.scalar_summary('loss',epoch_loss,epoch)
            epoch_acc = running_corrects.double() / dataset_sizes
            # logger.scalar_summary('acc', epoch_acc, epoch)

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                checkpoint_path = 'state-best.tar'
                torch.save({
                    'epoch':epoch,
                    'model_state_dict':model.state_dict(),
                    'optimizer_state_dict':optimizer.state_dict(),
                    'loss':epoch_loss,
                    'acc':best_acc
                },checkpoint_path)
        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))
    checkpoint = torch.load('./checkpoints/state-best.tar')
    model.load_state_dict(checkpoint['model_state_dict'])
    return model

model = initialize_model('resnet34',num_categories)
optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
criterion = nn.CrossEntropyLoss()
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
#torch.optim.lr_scheduler模块提供了一些根据epoch训练次数来调整学习率(learning rate)的方法。
# 一般情况下我们会设置随着epoch的增大而逐渐减小学习率gamma(float):更新lr的乘法因子;
pre_epoch = 0

model = train_model(model, criterion, optimizer, exp_lr_scheduler, pre_epoch, 100)#两分种一个epoch,跑8个小时,就是240个epoch

版权声明:本文为qq_16792139原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。