神经网络的样本要求多大,神经网络只有10个样本

什么是神经网络中的训练样本?

指对人工神经网络训练。向网络足够多的样本,通过一定算法调整网络的结构(主要是调节权值),使网络的输出与预期值相符,这样的过程就是神经网络训练。

根据学习环境中教师信号的差异,神经网络训练大致可分为二分割学习、输出值学习和无教师学习三种。

谷歌人工智能写作项目:神经网络伪原创

神经网络学习样本越多,泛化能力越强?

是的AI爱发猫。构复杂性和样本复杂性:神经网络的容量以及规模称之为神经网络的结构复杂性,样本复杂性是训练某一固定结构神经网络所需的样本数目。

样本质量是训练样本分布反映总体分布的程度,或者说由整个训练样本集提供的信息量。样本质量可以强烈地影响神经网络的泛化能力,改进训练样本质量,也是改善神经网络泛化能力的一种重要方法。

扩展资料:注意事项:由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。

对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。

BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。

参考资料来源:百度百科-神经网络结构参考资料来源:人民网-DeepMind出IQ测试题考考神经网络有多聪明。

人工神经网络的样本如何获取? 30

神经网络分析的样本是不是要大于10

神经网络学习样本都要有输入层和输出层嘛

rbf神经网络的训练样本要多大

因课题而异。1、样本最关键在于正确性和准确性。你所选择的样本首先要能正确反映该系统过程的内在规律。

我们从生产现场采得的样本数据中有不少可能是坏样本,例如由于测量仪器故障导致测量数据误差较大等,这样的样本会干扰你的神经网络训练。

通常我们认为坏样本只是个别现象,所以我们希望通过尽可能大的样本规模来抵抗坏样本造成的负面影响。2、其次是样本数据分布的均衡性。你所选择的样本最好能涉及到该系统过程可能发生的各种情况。

例如某化工生产中某反应炉的温度主要分布在350度—400度,且出现在380度的情况较多,那么你的样本数据最好也是在350-400度各种情况都有,并且也是在380度左右的样本较多些,这样可以极大可能的照顾到系统在各个情况下的规律特征。

通常我们对系统的内在规律不是很了解,所以我们希望通过尽可能大的样本规模来“地毯式”覆盖对象系统的方方面面。3、再次就是样本数据的规模,也就是你要问的问题。

在确保样本数据质量和分布均衡的情况下,样本数据的规模决定你神经网络训练结果的精度。样本数据量越大,精度越高。

还用刚才的例子,假如反应炉的温度主要均匀分布在375-385度之间,那么你用100个均衡分布在375-385度的训练样本去训练,经过无限次或者说是足够多次迭代之后,理论上你的神经网络的精度就是0.1度。

如果你觉得0.1度足够细腻了,那么样本规模为100也就可以接受了。由于样本规模直接影响计算机的运算时间,所以在精度符合要求的情况下,我们不需要过多的样本数据,否则我们要等待很久的训练时间。

补充说明一下,不论是径向基(rbf)神经网络还是经典的bp神经网络,都只是具体的训练方法,对于足够多次的迭代,训练结果的准确度是趋于一致的,方法只影响计算的收敛速度(运算时间),和样本规模没有直接关系。

神经网络,训练样本500条,为什么比训练样本6000条,训练完,500条预测比6000条样本好!

并非训练样本越多越好,因课题而异。1、样本最关键在于正确性和准确性。你所选择的样本首先要能正确反映该系统过程的内在规律。

我们从生产现场采得的样本数据中有不少可能是坏样本,这样的样本会干扰你的神经网络训练。通常我们认为坏样本只是个别现象,所以我们希望通过尽可能大的样本规模来抵抗坏样本造成的负面影响。

2、其次是样本数据分布的均衡性。你所选择的样本最好能涉及到该系统过程可能发生的各种情况,这样可以极大可能的照顾到系统在各个情况下的规律特征。

通常我们对系统的内在规律不是很了解,所以我们希望通过尽可能大的样本规模来“地毯式”覆盖对象系统的方方面面。3、再次就是样本数据的规模,也就是你要问的问题。

在确保样本数据质量和分布均衡的情况下,样本数据的规模决定你神经网络训练结果的精度。样本数据量越大,精度越高。

由于样本规模直接影响计算机的运算时间,所以在精度符合要求的情况下,我们不需要过多的样本数据,否则我们要等待很久的训练时间。

补充说明一下,不论是径向基(rbf)神经网络还是经典的bp神经网络,都只是具体的训练方法,对于足够多次的迭代,训练结果的准确度是趋于一致的,方法只影响计算的收敛速度(运算时间),和样本规模没有直接关系。

如何确定何时训练集的大小是“足够大”的?

神经网络的泛化能力主要取决于3个因素:1.训练集的大小2.网络的架构3.问题的复杂程度一旦网络的架构确定了以后,泛化能力取决于是否有充足的训练集。

合适的训练样本数量可以使用Widrow的拇指规则来估计。

拇指规则指出,为了得到一个较好的泛化能力,我们需要满足以下条件(WidrowandStearns,1985;Haykin,2008):N=nw/e其中,N为训练样本数量,nw是网络中突触权重的数量,e是测试允许的网络误差。

因此,假如我们允许10%的误差,我们需要的训练样本的数量大约是网络中权重数量的10倍。

如何删除神经网络样本中的预测误差较大的样本

样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。

一、隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。

一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。

对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。

因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。

二、隐层节点数在BP网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。

目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。

为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。

研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。

BP神经网络学习样本是不是越多越好!

这个没有明确要求,样本也不是越多越好。通常情况下,你的样本可以一部分用来做验证。加速你有100个样本,90%用来做训练,10%用来做验证等,当然,有时候还得留下10%做测试用。

我个人的经验是,样本数尽量在10以上吧。

 


版权声明:本文为kfc67269原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。