Cmn=Cm−1n−1+Cmn−1
mCmn=nCm−1n−1
C0n+C1n+C2n+……+Cnn=2n
1C1n+2C2n+3C3n+……+nCnn=n2n−1
12C1n+22C2n+32C3n+……+n2Cnn=n(n+1)2n−2
C1n1−C2n2+C3n3+……+(−1)n−1Cnnn=1+12+13+……+1n
(C0n)2+(C1n)2+(C2n)2+……+(Cnn)2=Cn2n
版权声明:本文为bigtiao097原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。