python画多层网络_python复杂网络结构可视化——matplotlib+networkx

什么是networkx?

networkx在02年5月产生,是用python语言编写的软件包,便于用户对复杂网络进行创建、操作和学习。利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等。 ——百度百科

我们可以用networkx做什么?

画图

2. 有向图,无向图,网络图……

3. 总之各种图

看到这你是不是心动了呢?今天的教程就是要教会你画出封面上的三层感知机模型图!

Let’s get started!

首先导入networkx和matplotlib模块

import networkx as nx

import matplotlib.pyplot as plt

>>> import networkx as nx

>>> G = nx.Graph() 定义了一个空图

>>> G.add_node(1) 这个图中增加了1节点

>>> G.add_node('A') 增加'A'节点

>>> G.add_nodes_from([2, 3]) 同时加2和3两个节点

>>> G.add_edges_from([(1,2),(1,3),(2,4),(2,5),(3,6),(4,8),(5,8),(3,7)])

# 增加这么多条边,在下面有举例

>>> H = nx.path_graph(10)

>>> G.add_nodes_from(H)

>>> G.add_node(H)

G.add_node('a')#添加点a

G.add_node(1,1)#用坐标来添加点

G.add_edge('x','y')#添加边,起点为x,终点为y

G.add_weight_edges_from([('x','y',1.0)])#第三个输入量为权值

#也可以

list = [[('a','b',5.0),('b','c',3.0),('a','c',1.0)]

G.add_weight_edges_from([(list)])

我们来看看上面最后一句是什么意思

import matplotlib.pyplot as plt

import networkx as nx

H = nx.path_graph(10)

G.add_nodes_from(H)

nx.draw(G, with_labels=True)

plt.show()

生成了标号为0到9的十个点!别急,丑是丑了点,一会我们再给他化妆。

#再举个栗子

G=nx.Graph()

#导入所有边,每条边分别用tuple表示

G.add_edges_from([(1,2),(1,3),(2,4),(2,5),(3,6),(4,8),(5,8),(3,7)])

nx.draw(G, with_labels=True, edge_color='b', node_color='g', node_size=1000)

plt.show()

#plt.savefig('./generated_image.png') 如果你想保存图片,去除这句的注释

好了,你现在已经知道如何给图添加边和节点了,接下来是构造环:

画个圈圈

import matplotlib.pyplot as plt

import networkx as nx

# H = nx.path_graph(10)

# G.add_nodes_from(H)

G = nx.Graph()

G.add_cycle([0,1,2,3,4])

nx.draw(G, with_labels=True)

plt.show()

画个五角星

import networkx as nx

import matplotlib.pyplot as plt

#画图!

G=nx.Graph()

G.add_node(1)

G.add_nodes_from([2,3,4,5])

for i in range(5):

for j in range(i):

if (abs(i-j) not in (1,4)):

G.add_edge(i+1, j+1)

nx.draw(G,

with_labels=True, #这个选项让节点有名称

edge_color='b', # b stands for blue!

pos=nx.circular_layout(G), # 这个是选项选择点的排列方式,具体可以用 help(nx.drawing.layout) 查看

# 主要有spring_layout (default), random_layout, circle_layout, shell_layout

# 这里是环形排布,还有随机排列等其他方式

node_color='r', # r = red

node_size=1000, # 节点大小

width=3, # 边的宽度

)

plt.show()

import random

G = nx.gnp_random_graph(10,0.3)

for u,v,d in G.edges(data=True):

d['weight'] = random.random()

edges,weights = zip(*nx.get_edge_attributes(G,'weight').items())

pos = nx.spring_layout(G)

nx.draw(G, pos, node_color='b', edgelist=edges, edge_color=weights, width=10.0, edge_cmap=plt.cm.Blues)

# plt.savefig('edges.png')

plt.show()

加入权重

import matplotlib.pyplot as plt

import networkx as nx

G = nx.Graph()

G.add_edge('a', 'b', weight=0.6)

G.add_edge('a', 'c', weight=0.2)

G.add_edge('c', 'd', weight=0.1)

G.add_edge('c', 'e', weight=0.7)

G.add_edge('c', 'f', weight=0.9)

G.add_edge('a', 'd', weight=0.3)

elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] > 0.5]

esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] <= 0.5]

pos = nx.spring_layout(G) # positions for all nodes

# nodes

nx.draw_networkx_nodes(G, pos, node_size=700)

# edges

nx.draw_networkx_edges(G, pos, edgelist=elarge,

width=6)

nx.draw_networkx_edges(G, pos, edgelist=esmall,

width=6, alpha=0.5, edge_color='b', style='dashed')

# labels

nx.draw_networkx_labels(G, pos, font_size=20, font_family='sans-serif')

plt.axis('off')

plt.show()

有向图

from __future__ import division

import matplotlib.pyplot as plt

import networkx as nx

G = nx.generators.directed.random_k_out_graph(10, 3, 0.5)

pos = nx.layout.spring_layout(G)

node_sizes = [3 + 10 * i for i in range(len(G))]

M = G.number_of_edges()

edge_colors = range(2, M + 2)

edge_alphas = [(5 + i) / (M + 4) for i in range(M)]

nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='blue')

edges = nx.draw_networkx_edges(G, pos, node_size=node_sizes, arrowstyle='->',

arrowsize=10, edge_color=edge_colors,

edge_cmap=plt.cm.Blues, width=2)

# set alpha value for each edge

for i in range(M):

edges[i].set_alpha(edge_alphas[i])

ax = plt.gca()

ax.set_axis_off()

plt.show()

颜色渐变的节点

import matplotlib.pyplot as plt

import networkx as nx

G = nx.cycle_graph(24)

pos = nx.spring_layout(G, iterations=200)

nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)

plt.show()

颜色渐变的边

import matplotlib.pyplot as plt

import networkx as nx

G = nx.star_graph(20)

pos = nx.spring_layout(G)

colors = range(20)

nx.draw(G, pos, node_color='#A0CBE2', edge_color=colors,

width=4, edge_cmap=plt.cm.Blues, with_labels=False)

plt.show()

如何画一个多层感知机?

import matplotlib.pyplot as plt

import networkx as nx

left, right, bottom, top, layer_sizes = .1, .9, .1, .9, [4, 7, 7, 2]

# 网络离上下左右的距离

# layter_sizes可以自己调整

import random

G = nx.Graph()

v_spacing = (top - bottom)/float(max(layer_sizes))

h_spacing = (right - left)/float(len(layer_sizes) - 1)

node_count = 0

for i, v in enumerate(layer_sizes):

layer_top = v_spacing*(v-1)/2. + (top + bottom)/2.

for j in range(v):

G.add_node(node_count, pos=(left + i*h_spacing, layer_top - j*v_spacing))

node_count += 1

# 这上面的数字调整我想了好半天,汗

for x, (left_nodes, right_nodes) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):

for i in range(left_nodes):

for j in range(right_nodes):

G.add_edge(i+sum(layer_sizes[:x]), j+sum(layer_sizes[:x+1]))

# 慢慢研究吧

pos=nx.get_node_attributes(G,'pos')

# 把每个节点中的位置pos信息导出来

nx.draw(G, pos,

node_color=range(node_count),

with_labels=True,

node_size=200,

edge_color=[random.random() for i in range(len(G.edges))],

width=3,

cmap=plt.cm.Dark2, # matplotlib的调色板,可以搜搜,很多颜色呢

edge_cmap=plt.cm.Blues

)

plt.show()

差不多就是这个效果了。

后续我会封装为一个类,加入动态演示,比如通过颜色深浅,显示神经网络在优化的时候权重变化。应该会很好玩,嘿嘿。

上面你也可以改变layer_sizes

比如改为233333

调皮了

layter_sizes = [2, 3, 4, 5, 5, 4, 3, ] 贼丑了

完。


版权声明:本文为weixin_39865440原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。