Mysql实战45讲 - 学习笔记

Sql流程

 

        
一条查询语句的执行过程一般是经过连接器、分析器、优化器、执行器等功能模块,最后到达存储引擎。
大体来说,MySQL 可以分为 Server 层和存储引擎层两部分。
Server 层包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。
而存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持 InnoDB、MyISAM、Memory 等多个存储引擎。现在最常用的存储引擎是 InnoDB,它从 MySQL 5.5.5 版本开始成为了默认存储引擎。
也就是说,你执行 create table 建表的时候,如果不指定引擎类型,默认使用的就是 InnoDB。不过,你也可以通过指定存储引擎的类型来选择别的引擎,比如在 create table 语句中使用 engine=memory, 来指定使用内存引擎创建表。不同存储引擎的表数据存取方式不同,支持的功能也不同,在后面的文章中,我们会讨论到引擎的选择。
从图中不难看出,不同的存储引擎共用一个 Server 层 ,也就是从连接器到执行器的部分。你可以先对每个组件的名字有个印象,接下来我会结合开头提到的那条 SQL 语句,带你走一遍整个执行流程,依次看下每个组件的作用。
1)连接器
第一步,你会先连接到这个数据库上,这时候接待你的就是连接器。连接器负责跟客户端建立连接、获取权限、维持和管理连接。连接命令一般是这么写的:
 
 
输完命令之后,你就需要在交互对话里面输入密码。虽然密码也可以直接跟在 -p 后面写在命令行中,但这样可能会导致你的密码泄露。如果你连的是生产服务器,强烈建议你不要这么做。
连接命令中的 mysql 是客户端工具,用来跟服务端建立连接。在完成经典的 TCP 握手后,连接器就要开始认证你的身份,这个时候用的就是你输入的用户名和密码。
  • 如果用户名或密码不对,你就会收到一个"Access denied for user"的错误,然后客户端程序结束执行。
  • 如果用户名密码认证通过,连接器会到权限表里面查出你拥有的权限。之后,这个连接里面的权限判断逻辑,都将依赖于此时读到的权限。
这就意味着,一个用户成功建立连接后,即使你用管理员账号对这个用户的权限做了修改,也不会影响已经存在连接的权限。修改完成后,只有再新建的连接才会使用新的权限设置。
连接完成后,如果你没有后续的动作,这个连接就处于空闲状态,你可以在 show processlist 命令中看到它。文本中这个图是 show processlist 的结果,其中的 Command 列显示为“Sleep”的这一行,就表示现在系统里面有一个空闲连接。
        
        
 
客户端如果太长时间没动静,连接器就会自动将它断开。这个时间是由参数 wait_timeout 控制的,默认值是 8 小时。
如果在连接被断开之后,客户端再次发送请求的话,就会收到一个错误提醒: Lost connection to MySQL server during query。这时候如果你要继续,就需要重连,然后再执行请求了。
数据库里面,长连接是指连接成功后,如果客户端持续有请求,则一直使用同一个连接。短连接则是指每次执行完很少的几次查询就断开连接,下次查询再重新建立一个。
建立连接的过程通常是比较复杂的,所以我建议你在使用中要尽量减少建立连接的动作,也就是尽量使用长连接。
但是全部使用长连接后,你可能会发现,有些时候 MySQL 占用内存涨得特别快,这是因为 MySQL 在执行过程中临时使用的内存是管理在连接对象里面的。这些资源会在连接断开的时候才释放。所以如果长连接累积下来,可能导致内存占用太大,被系统强行杀掉(OOM),从现象看就是 MySQL 异常重启了。
怎么解决这个问题呢?你可以考虑以下两种方案。
  1. 定期断开长连接。使用一段时间,或者程序里面判断执行过一个占用内存的大查询后,断开连接,之后要查询再重连。
  1. 如果你用的是 MySQL 5.7 或更新版本,可以在每次执行一个比较大的操作后,通过执行 mysql_reset_connection 来重新初始化连接资源。这个过程不需要重连和重新做权限验证,但是会将连接恢复到刚刚创建完时的状态。
查询缓存
连接建立完成后,你就可以执行 select 语句了。执行逻辑就会来到第二步:查询缓存。
MySQL 拿到一个查询请求后,会先到查询缓存看看,之前是不是执行过这条语句。之前执行过的语句及其结果可能会以 key-value 对的形式,被直接缓存在内存中。key 是查询的语句,value 是查询的结果。如果你的查询能够直接在这个缓存中找到 key,那么这个 value 就会被直接返回给客户端。
如果语句不在查询缓存中,就会继续后面的执行阶段。执行完成后,执行结果会被存入查询缓存中。你可以看到,如果查询命中缓存,MySQL 不需要执行后面的复杂操作,就可以直接返回结果,这个效率会很高。
但是大多数情况下我会建议你不要使用查询缓存,为什么呢?因为查询缓存往往弊大于利。
查询缓存的失效非常频繁,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。因此很可能你费劲地把结果存起来,还没使用呢,就被一个更新全清空了。对于更新压力大的数据库来说,查询缓存的命中率会非常低。除非你的业务就是有一张静态表,很长时间才会更新一次。比如,一个系统配置表,那这张表上的查询才适合使用查询缓存。
好在 MySQL 也提供了这种“按需使用”的方式。你可以将参数 query_cache_type 设置成 DEMAND,这样对于默认的 SQL 语句都不使用查询缓存。而对于你确定要使用查询缓存的语句,可以用 SQL_CACHE 显式指定,像下面这个语句一样:
 
 
需要注意的是,MySQL 8.0 版本直接将查询缓存的整块功能删掉了,也就是说 8.0 开始彻底没有这个功能了。
2)分析器
如果没有命中查询缓存,就要开始真正执行语句了。首先,MySQL 需要知道你要做什么,因此需要对 SQL 语句做解析。
分析器先会做“词法分析”。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面的字符串分别是什么,代表什么。
MySQL 从你输入的"select"这个关键字识别出来,这是一个查询语句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。
做完了这些识别以后,就要做“语法分析”。根据词法分析的结果,语法分析器会根据语法规则,判断你输入的这个 SQL 语句是否满足 MySQL 语法。
如果你的语句不对,就会收到“You have an error in your SQL syntax”的错误提醒,比如下面这个语句 select 少打了开头的字母“s”。
 
 
一般语法错误会提示第一个出现错误的位置,所以你要关注的是紧接“use near”的内容。
3)优化器
经过了分析器,MySQL 就知道你要做什么了。在开始执行之前,还要先经过优化器的处理。
优化器是在表里面有多个索引的时候,决定使用哪个索引;或者在一个语句有多表关联(join)的时候,决定各个表的连接顺序。比如你执行下面这样的语句,这个语句是执行两个表的 join:
 
 
  • 既可以先从表 t1 里面取出 c=10 的记录的 ID 值,再根据 ID 值关联到表 t2,再判断 t2 里面 d 的值是否等于 20。
  • 也可以先从表 t2 里面取出 d=20 的记录的 ID 值,再根据 ID 值关联到 t1,再判断 t1 里面 c 的值是否等于 10。
这两种执行方法的逻辑结果是一样的,但是执行的效率会有不同,而优化器的作用就是决定选择使用哪一个方案。
优化器阶段完成后,这个语句的执行方案就确定下来了,然后进入执行器阶段。如果你还有一些疑问,比如优化器是怎么选择索引的,有没有可能选择错等等,没关系,我会在后面的文章中单独展开说明优化器的内容。
4)执行器
MySQL 通过分析器知道了你要做什么,通过优化器知道了该怎么做,于是就进入了执行器阶段,开始执行语句。
开始执行的时候,要先判断一下你对这个表 T 有没有执行查询的权限,如果没有,就会返回没有权限的错误,如下所示 (在工程实现上,如果命中查询缓存,会在查询缓存返回结果的时候,做权限验证。查询也会在优化器之前调用 precheck 验证权限)。
 
 
如果有权限,就打开表继续执行。打开表的时候,执行器就会根据表的引擎定义,去使用这个引擎提供的接口。
比如我们这个例子中的表 T 中,ID 字段没有索引,那么执行器的执行流程是这样的:
  1. 调用 InnoDB 引擎接口取这个表的第一行,判断 ID 值是不是 10,如果不是则跳过,如果是则将这行存在结果集中;
  1. 调用引擎接口取“下一行”,重复相同的判断逻辑,直到取到这个表的最后一行。
  1. 执行器将上述遍历过程中所有满足条件的行组成的记录集作为结果集返回给客户端。
至此,这个语句就执行完成了。
对于有索引的表,执行的逻辑也差不多。第一次调用的是“取满足条件的第一行”这个接口,之后循环取“满足条件的下一行”这个接口,这些接口都是引擎中已经定义好的。
你会在数据库的慢查询日志中看到一个 rows_examined 的字段,表示这个语句执行过程中扫描了多少行。这个值就是在执行器每次调用引擎获取数据行的时候累加的。
在有些场景下,执行器调用一次,在引擎内部则扫描了多行,因此 引擎扫描行数跟 rows_examined 并不是完全相同的。 我们后面会专门有一篇文章来讲存储引擎的内部机制,里面会有详细的说明。
在一个表上有更新的时候,跟这个表有关的查询缓存会失效,所以这条语句就会把表 T 上所有缓存结果都清空。这也就是我们一般不建议使用查询缓存的原因。
接下来,分析器会通过词法和语法解析知道这是一条更新语句。优化器决定要使用 ID 这个索引。然后,执行器负责具体执行,找到这一行,然后更新。
与查询流程不一样的是,更新流程还涉及两个重要的日志模块,redo log(重做日志)和 binlog(归档日志)

 

自增主键选择

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。
 
自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。
 
插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。
 
也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
 
而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。
 
除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?
 
由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。
 
显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
 
所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。
 
有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:
  1. 只有一个索引;
  1. 该索引必须是唯一索引。
你一定看出来了,这就是典型的 KV 场景。
 
由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。
 
这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

覆盖索引

如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

1)最左前缀原则

索引项是按照索引定义里面出现的字段顺序排序的。在建立联合索引的时候,如何安排索引内的字段顺序。
这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此, 第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。
 
所以现在你知道了,这段开头的问题里,我们要为高频请求创建 (身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。
 
那么,如果既有联合查询,又有基于 a、b 各自的查询呢?查询条件里面只有 b 的语句,是无法使用 (a,b) 这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护 (a,b)、(b) 这两个索引。
 
这时候,我们要 考虑的原则就是空间 了。比如上面这个市民表的情况,name 字段是比 age 字段大的 ,那我就建议你创建一个(name,age) 的联合索引和一个 (age) 的单字段索引。

2)索引下推

MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是 10 岁的所有男孩”。那么,SQL 语句是这么写的:
mysql> select * from tuser where name like '张 %' and age=10 and ismale=1;
你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录 ID3。当然,这还不错,总比全表扫描要好。
然后呢?
当然是判断其他条件是否满足。
在 MySQL 5.6 之前,只能从 ID3 开始一个个回表(回到主键索引找数据叫回表 )。到主键索引上找出数据行,再对比字段值。
而 MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类

全局锁

就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。 全局锁的典型使用场景是,做全库逻辑备份。 也就是把整库每个表都 select 出来存成文本。

表级锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。
表锁的语法是 lock tables … read/write。 与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。
举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。
在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。
另一类表级的锁是 MDL(metadata lock)。 MDL 不需要显式使用,在访问一个表的时候会被自动加上。MDL 的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。
因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。
  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。
虽然 MDL 锁是系统默认会加的,但却是你不能忽略的一个机制。比如下面这个例子,我经常看到有人掉到这个坑里:给一个小表加个字段,导致整个库挂了。
事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。 

 行锁

在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。 如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

死锁检测

当出现死锁以后,有两种策略:
  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。

 

 

热点行更新导致性能问题。

所有事务都要更新同一行的场景:
每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。
 
根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢?问题的症结在于,死锁检测要耗费大量的 CPU 资源。
 
一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。 但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。
 
另一个思路是控制并发度。 根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有 600 个客户端,这样即使每个客户端控制到只有 5 个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到 3000。
 
因此,这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改 MySQL 源码的人,也可以做在 MySQL 里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了。
 
可能你会问, 如果团队里暂时没有数据库方面的专家,不能实现这样的方案,能不能从设计上优化这个问题呢?
你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的 1/10,可以减少锁等待个数,也就减少了死锁检测的 CPU 消耗。
 
这个方案看上去是无损的,但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会减少,比如退票逻辑,那么这时候就需要考虑当一部分行记录变成 0 的时候,代码要有特殊处理。

 

更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。即使是在MCCC提供的快照中,upadte语句set  k=k+1会基于当前数据库中最新的k值3,而不是自己快照启动是读到的旧值2。其实,除了 update 语句外,select 语句如果加锁,也是当前读。
所以,如果把事务的查询语句 select * from t where id=1 修改一下,加上 lock in share mode(读锁,共享锁) 或 for update(写锁,排他锁),也都可以读到版本号是 101 的数据,返回的 k 的值是 3。
可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。

普通索引 vs 唯一索引 vs 前缀索引

普通索引比唯一索引性能稍好一些,前提是有change buffer优化且写入数据之后不会立即就读。

索引本身是有序的,排序的时候选择索引代价更小。

使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。前缀索引是指找一个column已前n个字符做索引。如想在邮箱字段上建索引但是邮箱一般太长太耗资源,一般可以取email前6、7个字符做索引。但是前缀索引可能导致多次查询,所以字符个数要好好选择。我们在建立索引时关注的是区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。因此,我们可以通过统计索引上有多少个不同的值来判断要使用多长的前缀。 使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是在选择是否使用前缀索引时需要考虑的一个因素。

索引选取的越长,占用的磁盘空间就越大,相同的数据页能放下的索引值就越少,搜索的效率也就会越低。

前缀索引如果区分度不够好可以考虑使用倒序存储和使用 hash 字段这两种方法。

1)如果你存储身份证号的时候把它倒过来存,每次查询的时候:
mysql> select field_list from t where id_card = reverse('input_id_card_string');
2)可以在表上再创建一个整数字段,来保存身份证的校验码,同时在这个字段上创建索引。然后每次插入新记录的时候,都同时用 crc32() 这个函数得到校验码填到这个新字段。由于校验码可能存在冲突,也就是说两个不同的身份证号通过 crc32() 函数得到的结果可能是相同的,所以你的查询语句 where 部分要判断 id_card 的值是否精确相同。
mysql> select field_list from t where id_card_crc=crc32('input_id_card_string') and id_card='input_id_card_string'

数据库表的空间回收

一个 InnoDB 表包含两部分,即:表结构定义和数据。在 MySQL 8.0 版本以前,表结构是存在以.frm 为后缀的文件里。而 MySQL 8.0 版本,则已经允许把表结构定义放在系统数据表中了。因为表结构定义占用的空间很小。 简单地删除表数据达不到表空间回收的效果。
表数据既可以存在共享表空间里,也可以是单独的文件。这个行为是由参数 innodb_file_per_table 控制的:
  1. 这个参数设置为 OFF 表示的是,表的数据放在系统共享表空间,也就是跟数据字典放在一起;
  1. 这个参数设置为 ON 表示的是,每个 InnoDB 表数据存储在一个以 .ibd 为后缀的文件中。
从 MySQL 5.6.6 版本开始,它的默认值就是 ON 了。
建议你不论使用 MySQL 的哪个版本,都将这个值设置为 ON。因为,一个表单独存储为一个文件更容易管理,而且在你不需要这个表的时候,通过 drop table 命令,系统就会直接删除这个文件。而如果是放在共享表空间中,即使表删掉了,空间也是不会回收的。

数据删除流程

InnoDB 里的数据都是用 B+ 树的结构组织的。如果 我们用 delete 命令把整个表的数据删除呢?结果就是,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。
你现在知道了,delete 命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。也就是说,通过 delete 命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。
实际上, 不止是删除数据会造成空洞,插入数据也会。
如果数据是按照索引递增顺序插入的,那么索引是紧凑的。但如果数据是随机插入的,就可能造成索引的数据页分裂。
也就是说,经过大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。
而重建表,就可以达到这样的目的。
你可以新建一个与表 A 结构相同的表 B,然后按照主键 ID 递增的顺序,把数据一行一行地从表 A 里读出来再插入到表 B 中。由于表 B 是新建的表,所以表 A 主键索引上的空洞,在表 B 中就都不存在了。

order by

全字段排序

select city,name,age from t where city='杭州' order by name limit 1000 ;
在 city 字段上创建索引
从图中可以看到,满足 city='杭州’条件的行,是从 ID_X 到 ID_(X+N) 的这些记录。
 
通常情况下,这个语句执行流程如下所示 :
  1. 初始化 sort_buffer,确定放入 name、city、age 这三个字段;
  1. 从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
  1. 到主键 id 索引取出整行,取 name、city、age 三个字段的值,存入 sort_buffer 中;
  1. 从索引 city 取下一个记录的主键 id;
  1. 重复步骤 3、4 直到 city 的值不满足查询条件为止,对应的主键 id 也就是图中的 ID_Y;
  1. 对 sort_buffer 中的数据按照字段 name 做快速排序;
  1. 按照排序结果取前 1000 行返回给客户端。
“按 name 排序”这个动作,可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数 sort_buffer_size。
sort_buffer_size,就是 MySQL 为排序开辟的内存(sort_buffer)的大小。如果要排序的数据量小于 sort_buffer_size,排序就在内存中完成。但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序。
如果单行很大,内存放不下太多行这样效率不高,可以采用另一种rowId排序算法。
SET max_length_for_sort_data = 16;
max_length_for_sort_data,是 MySQL 中专门控制用于排序的行数据的长度的一个参数。它的意思是,如果单行的长度超过这个值,MySQL 就认为单行太大,要换一个算法。
 
city、name、age 这三个字段的定义总长度是 36,我把 max_length_for_sort_data 设置为 16,我们再来看看计算过程有什么改变。
 
新的算法放入 sort_buffer 的字段,只有要排序的列(即 name 字段)和主键 id。
 
但这时,排序的结果就因为少了 city 和 age 字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:
  1. 初始化 sort_buffer,确定放入两个字段,即 name 和 id;
  1. 从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
  1. 到主键 id 索引取出整行,取 name、id 这两个字段,存入 sort_buffer 中;
  1. 从索引 city 取下一个记录的主键 id;
  1. 重复步骤 3、4 直到不满足 city='杭州’条件为止,也就是图中的 ID_Y;
  1. 对 sort_buffer 中的数据按照字段 name 进行排序;
  1. 遍历排序结果,取前 1000 行,并按照 id 的值回到原表中取出 city、name 和 age 三个字段返回给客户端。
这个执行流程的示意图如下,我把它称为 rowid 排序。
如果有覆盖索引(city, name),则不需要内存中排序,因为覆盖索引本身是有序的。

有索引却全表扫描例子

1)对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。
mysql> select count(*) from tradelog where month(t_modified)=7;
会导致全表扫描,尽管t_modified上有索引
2)隐式类型转换
mysql> select * from tradelog where tradeid=110717;
交易编号 tradeid 这个字段上,本来就有索引,但是 explain 的结果却显示,这条语句需要走全表扫描。你可能也发现了,tradeid 的字段类型是 varchar(32),而输入的参数却是整型,所以需要做类型转换。
这条语句触发了我们上面说到的规则:对索引字段做函数操作,优化器会放弃走树搜索功能。
 

转载于:https://www.cnblogs.com/codingforum/p/11597576.html