Multi-Step LSTM预测(2)
关联教程:
多步预测的LSTM网络
数据准备
1、变成具有稳定性数据
2、缩放数据
LSTM模型预测过程
1、数据预测处理,准备数据
2、定义模型
3、训练模型
4、预测
5、数据逆变换
6、评估
代码
- from pandas import DataFrame
- from pandas import Series
- from pandas import concat
- from pandas import read_csv
- from pandas import datetime
- from sklearn.metrics import mean_squared_error
- from sklearn.preprocessing import MinMaxScaler
- from keras.models import Sequential
- from keras.layers import Dense
- from keras.layers import LSTM
- from math import sqrt
- from matplotlib import pyplot
- from numpy import array
- # date-time parsing function for loading the dataset
- def parser(x):
- return datetime.strptime( '190'+x, '%Y-%m')
- # convert time series into supervised learning problem
- def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
- n_vars = 1 if type(data) is list else data.shape[ 1]
- df = DataFrame(data)
- cols, names = list(), list()
- # input sequence (t-n, ... t-1)
- for i in range(n_in, 0, -1):
- cols.append(df.shift(i))
- names += [( 'var%d(t-%d)' % (j+ 1, i)) for j in range(n_vars)]
- # forecast sequence (t, t+1, ... t+n)
- for i in range( 0, n_out):
- cols.append(df.shift(-i))
- if i == 0:
- names += [( 'var%d(t)' % (j+ 1)) for j in range(n_vars)]
- else:
- names += [( 'var%d(t+%d)' % (j+ 1, i)) for j in range(n_vars)]
- # put it all together
- agg = concat(cols, axis= 1)
- agg.columns = names
- # drop rows with NaN values
- if dropnan:
- agg.dropna(inplace= True)
- return agg
- # create a differenced series
- def difference(dataset, interval=1):
- diff = list()
- for i in range(interval, len(dataset)):
- value = dataset[i] - dataset[i - interval]
- diff.append(value)
- return Series(diff)
- # transform series into train and test sets for supervised learning
- def prepare_data(series, n_test, n_lag, n_seq):
- # extract raw values
- raw_values = series.values
- # transform data to be stationary
- diff_series = difference(raw_values, 1)
- diff_values = diff_series.values
- diff_values = diff_values.reshape(len(diff_values), 1)
- # rescale values to -1, 1
- scaler = MinMaxScaler(feature_range=( -1, 1))
- scaled_values = scaler.fit_transform(diff_values)
- scaled_values = scaled_values.reshape(len(scaled_values), 1)
- # transform into supervised learning problem X, y
- supervised = series_to_supervised(scaled_values, n_lag, n_seq)
- supervised_values = supervised.values
- # split into train and test sets
- train, test = supervised_values[ 0:-n_test], supervised_values[-n_test:]
- return scaler, train, test
- # fit an LSTM network to training data
- def fit_lstm(train, n_lag, n_seq, n_batch, nb_epoch, n_neurons):
- # reshape training into [samples, timesteps, features]
- X, y = train[:, 0:n_lag], train[:, n_lag:]
- X = X.reshape(X.shape[ 0], 1, X.shape[ 1])
- # design network
- model = Sequential()
- model.add(LSTM(n_neurons, batch_input_shape=(n_batch, X.shape[ 1], X.shape[ 2]), stateful= True))
- model.add(Dense(y.shape[ 1]))
- model.compile(loss= 'mean_squared_error', optimizer= 'adam')
- # fit network
- for i in range(nb_epoch):
- model.fit(X, y, epochs= 1, batch_size=n_batch, verbose= 0, shuffle= False)
- model.reset_states()
- return model
- # make one forecast with an LSTM,
- def forecast_lstm(model, X, n_batch):
- # reshape input pattern to [samples, timesteps, features]
- X = X.reshape( 1, 1, len(X))
- # make forecast
- forecast = model.predict(X, batch_size=n_batch)
- # convert to array
- return [x for x in forecast[ 0, :]]
- # evaluate the persistence model
- def make_forecasts(model, n_batch, train, test, n_lag, n_seq):
- forecasts = list()
- for i in range(len(test)):
- X, y = test[i, 0:n_lag], test[i, n_lag:]
- # make forecast
- forecast = forecast_lstm(model, X, n_batch)
- # store the forecast
- forecasts.append(forecast)
- return forecasts
- # invert differenced forecast
- def inverse_difference(last_ob, forecast):
- # invert first forecast
- inverted = list()
- inverted.append(forecast[ 0] + last_ob)
- # propagate difference forecast using inverted first value
- for i in range( 1, len(forecast)):
- inverted.append(forecast[i] + inverted[i -1])
- return inverted
- # inverse data transform on forecasts
- def inverse_transform(series, forecasts, scaler, n_test):
- inverted = list()
- for i in range(len(forecasts)):
- # create array from forecast
- forecast = array(forecasts[i])
- forecast = forecast.reshape( 1, len(forecast))
- # invert scaling
- inv_scale = scaler.inverse_transform(forecast)
- inv_scale = inv_scale[ 0, :]
- # invert differencing
- index = len(series) - n_test + i - 1
- last_ob = series.values[index]
- inv_diff = inverse_difference(last_ob, inv_scale)
- # store
- inverted.append(inv_diff)
- return inverted
- # evaluate the RMSE for each forecast time step
- def evaluate_forecasts(test, forecasts, n_lag, n_seq):
- for i in range(n_seq):
- actual = [row[i] for row in test]
- predicted = [forecast[i] for forecast in forecasts]
- rmse = sqrt(mean_squared_error(actual, predicted))
- print( 't+%d RMSE: %f' % ((i+ 1), rmse))
- # plot the forecasts in the context of the original dataset
- def plot_forecasts(series, forecasts, n_test):
- # plot the entire dataset in blue
- pyplot.plot(series.values)
- # plot the forecasts in red
- for i in range(len(forecasts)):
- off_s = len(series) - n_test + i - 1
- off_e = off_s + len(forecasts[i]) + 1
- xaxis = [x for x in range(off_s, off_e)]
- yaxis = [series.values[off_s]] + forecasts[i]
- pyplot.plot(xaxis, yaxis, color= 'red')
- # show the plot
- pyplot.show()
- # load dataset
- series = read_csv( 'shampoo-sales.csv', header= 0, parse_dates=[ 0], index_col= 0, squeeze= True, date_parser=parser)
- # configure
- n_lag = 1
- n_seq = 3
- n_test = 10
- n_epochs = 1500
- n_batch = 1
- n_neurons = 1
- # prepare data
- scaler, train, test = prepare_data(series, n_test, n_lag, n_seq)
- # fit model
- model = fit_lstm(train, n_lag, n_seq, n_batch, n_epochs, n_neurons)
- # make forecasts
- forecasts = make_forecasts(model, n_batch, train, test, n_lag, n_seq)
- # inverse transform forecasts and test
- forecasts = inverse_transform(series, forecasts, scaler, n_test+ 2)
- actual = [row[n_lag:] for row in test]
- actual = inverse_transform(series, actual, scaler, n_test+ 2)
- # evaluate forecasts
- evaluate_forecasts(actual, forecasts, n_lag, n_seq)
- # plot forecasts
- plot_forecasts(series, forecasts, n_test+ 2)