datax主要特点:
1、异构数据库和文件系统之间的数据交换;
2、采用Framework + plugin架构构建,Framework处理了缓冲,流控,并发,上下文加载等高速数据交换的大部分技术问题,提供了简单的接口与插件交互,
插件仅需实现对数据处理系统的访问;
3、数据传输过程在单进程内完成,全内存操作,不读写磁盘,也没有IPC;
datax是插件式的etl工具,使用的时候需要通过配置json类型的文件。
下面是我通过python脚本,查询mysql数据库中表的信息生成datax需要的json配置文件。
#coding=utf-8
import os
import sys
import getopt
import json
import pymysql
pymysql.install_as_MySQLdb()
#MySQL相关配置,需根据实际情况作出修改
mysql_host = "hadoop101"
mysql_port = "3306"
mysql_user = "root"
mysql_passwd = "123456"
#HDFS NameNode相关配置,需根据实际情况作出修改
hdfs_nn_host = "hadoop101"
hdfs_nn_port = "8020"
#生成配置文件的目标路径,可根据实际情况作出修改
output_path = "/opt/bdp/datax/job/import"
def get_connection():
return pymysql.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, passwd=mysql_passwd)
def get_mysql_meta(database, table):
connection = get_connection()
cursor = connection.cursor()
sql= "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"
cursor.execute(sql, [database, table])
fetchall = cursor.fetchall()
cursor.close()
connection.close()
return fetchall
def get_mysql_columns(database, table):
return (list(map(lambda x: x[0], get_mysql_meta(database, table))))
def get_hive_columns(database, table):
def type_mapping(mysql_type):
mappings = {
"bigint": "bigint",
"int": "bigint",
"smallint": "bigint",
"tinyint": "bigint",
"decimal": "string",
"double": "double",
"float": "float",
"binary": "string",
"char": "string",
"varchar": "string",
"datetime": "string",
"time": "string",
"timestamp": "string",
"date": "string",
"text": "string"
}
return mappings[mysql_type]
meta = get_mysql_meta(database, table)
return (list(map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta)))
def generate_json(source_database, source_table):
job = {
"job": {
"setting": {
"speed": {
"channel": 3
},
"errorLimit": {
"record": 0,
"percentage": 0.02
}
},
"content": [{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": mysql_user,
"password": mysql_passwd,
"column": get_mysql_columns(source_database, source_table),
"splitPk": "",
"connection": [{
"table": [source_table],
"jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database + "?useSSL=false"]
}]
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
"fileType": "text",
"path": "${targetdir}",
"fileName": source_table,
"column": get_hive_columns(source_database, source_table),
"writeMode": "append",
"fieldDelimiter": "\t",
"compress": "gzip"
}
}
}]
}
}
if not os.path.exists(output_path):
os.makedirs(output_path)
with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f:
json.dump(job, f)
def main(args):
source_database = "[要查询的数据库]"
source_table = "[要查询的表]"
options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl='])
for opt_name, opt_value in options:
if opt_name in ('-d', '--sourcedb'):
source_database = opt_value
if opt_name in ('-t', '--sourcetbl'):
source_table = opt_value
generate_json(source_database, source_table)
if __name__ == '__main__':
main(sys.argv[1:])
版权声明:本文为weixin_45408791原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。