1.需求描述
针对简单数据的排序需求并不复杂,大数据量文本中每行只存在一个数值,要求按照数值大小输出,且为数值标记行数。本案例对理解MR的原理深有帮助。
输入
12
58
1283
45
9
...
输出
1 9
2 12
3 45
4 58
5 1283
...
2.实现思路
MapReduce的Reduce阶段会按照key-velue对中的key进行排序,如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序,如果key为封装为String的Text类型,那么MapReduce按照字典顺序对字符串排序。
3.代码实现
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* 简单数据排序
*/
public class DataSort {
/**
* map将输入中的value化成IntWritable类型,作为输出的key
*/
public static class SortMapper extends Mapper<Object, Text, IntWritable, IntWritable> {
private static IntWritable data = new IntWritable();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
data.set(Integer.parseInt(line));
context.write(data, new IntWritable(1));
}
}
/**
* reduce将输入中的key复制到输出数据的key上,然后根据输入的value-list中元素的个数决定key的输出次数
* 用全局linenum来代表key的序
*/
public static class SortReducer extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
private static IntWritable linenum = new IntWritable(1);
public void reduce(IntWritable key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
for (IntWritable val : values) {
context.write(linenum, key);
linenum = new IntWritable(linenum.get() + 1);
}
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
if (args.length < 2) {
System.out.println("参数不足");
System.exit(1);
}
String inputPath = args[0];
String outputPath = args[1];
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJobName("word count");
job.setJarByClass(DataSort.class);
job.setMapperClass(DataSort.SortMapper.class);
job.setReducerClass(DataSort.SortReducer.class);
/**
* 设置map输出key-value类型
*/
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(IntWritable.class);
/**
* 设置reduce输出key-value类型
*/
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path(inputPath));
FileOutputFormat.setOutputPath(job, new Path(outputPath));
job.waitForCompletion(true);
}
}
4.问题
如果要实现倒序输出该如何做?
版权声明:本文为majianxiong_lzu原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。