1. 多个txt文件合并成一个txt
import os
import os.path
filedir = r'./TsignDet Test Database Annotation/lable' # 填入要合并的文件夹名字
filenames = os.listdir(filedir) # 获取文件夹内每个文件的名字
f = open(r'./TsignDet Test Database Annotation/test_all.txt', 'w') # 以写的方式打开文件,没有则创建
# 对每个文件进行遍历
for filename in filenames:
filepath = filedir + '/' + filename # 将文件夹路径和文件名字合并
for line in open(filepath): # 循环遍历对每一个文件内的数据
if line[0].isdecimal():
str = filename+","+line
f.writelines(str) # 将数据每次按行写入f打开的文件中
f.close() # 关闭
2.xml文件转换成csv
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
os.chdir('D:\\test\\test_images\\frame2')
path = './TsignDet Train Database/train_image/'
def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df
def main():
image_path = path
xml_df = xml_to_csv(image_path)
xml_df.to_csv('tv_vehicle_labels.csv', index=None)
print('Successfully converted xml to csv.')
main()
3.批量将txt中的有些行去掉
对每个文件进行遍历
with open(r'C:\Users\10500\Desktop\AI_Learning\0_bs\detection and classify\3.TT100K_ObjectDetection\dataset\TsignDet Test Database Annotation\test_all.txt', 'r') as f1:
with open(r'C:\Users\10500\Desktop\AI_Learning\0_bs\detection and classify\3.TT100K_ObjectDetection\dataset\TsignDet Test Database Annotation\new_test_all','w') as f2:
for line in f1: # 循环遍历对每一个文件内的数据
res = line.strip().split(',')
print(res)
if len(res)>3: #不想去掉行的特征
f2.writelines(line) # 将数据每次按行写入f打开的文件中
print('over')
4.批量更换文件后缀
import os
files = os.listdir(r"C:\360Downloads\anaconda\Lib\site-packages\tensorflow\models-master\research\object_detection\test_image")#列出当前目录下所有的文件
for filename in files:
portion = os.path.splitext(filename)#分离文件名字和后缀
print(portion)
if portion[1] ==".JPG":#根据后缀来修改,如无后缀则空
print(portion[1])
newname = portion[0]+".jpg"#要改的新后缀
newname = portion[1]+".mp3"#要改的新后缀
os.chdir(r"C:\360Downloads\anaconda\Lib\site-packages\tensorflow\models-master\research\object_detection\test_image")#切换文件路径,如无路径则要新建或者路径同上,做好备份
os.rename(filename,newname)
5.批量压缩图片
import os
from PIL import Image
import glob
DIR = 'C:\\360Downloads\\anaconda\\Lib\\site-packages\\tensorflow\\models-master\\research\\object_detection\\test_image\\'
class Compress_Picture(object):
def __init__(self):
# 图片格式,可以换成.bpm等
self.file = '.jpg'
# 图片压缩批处理
def compressImage(self):
for filename in glob.glob('%s%s%s' % (DIR, '*', self.file)):
print(filename)
# 打开原图片压缩
sImg = Image.open(filename)
w, h = sImg.size
print(w, h)
dImg = sImg.resize((640, 480), Image.ANTIALIAS) # 设置压缩尺寸和选项,注意尺寸要用括号
# 如果不存在目的目录则创建一个
comdic = "%scompress/" % DIR
if not os.path.exists(comdic):
os.makedirs(comdic)
# 压缩图片路径名称
f1 = filename.split('/')
f1 = f1[-1].split('\\')
f2 = f1[-1].split('.')
f2 = '%s%s%s' % (comdic, f2[0], self.file)
print(f2)
dImg.save(f2) # save这个函数后面可以加压缩编码选项JPEG之类的
print("%s compressed succeeded" % f1[-1])
if __name__ == "__main__":
obj = Compress_Picture()
obj.compressImage()
版权声明:本文为weixin_44736161原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。