model.add(Dense(20, 64))
Traceback (most recent call last):
File "", line 1, in model.add(Dense(20, 64))
File "d:\ProgramData\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 46, in wrapper str(list(args[1:])))
TypeError: `Dense` can accept only 1 positional arguments ('units',), but you passed the following positional arguments: [20, 64]
序贯模型API - Keras中文文档序贯模型API - Keras中文文档:
https://keras-cn.readthedocs.io/en/latest/models/sequential/
import pandas as pd
inputfile = 'C:/Users/Administrator/Desktop/data analysis/Python_data_analysis_and_mining/chapter5/demo/data/sales_data.xls'
data = pd.read_excel(inputfile, index_col = u'序号')
data[data == u'好'] = 1
data[data == u'是'] = 1
data[data == u'高'] = 1
data[data != 1] = 0
x = data.iloc[:,:3].as_matrix().astype(int)
y = data.iloc[:,3].as_matrix().astype(int)
from keras.models import Sequential
from keras.layers.core import Dense, Activation
model = Sequential()
model.add(Dense(input_dim=3, output_dim=10)) #添加输入层(3节点)到隐藏层(10节点)的连接
model.add(Activation('relu'))
model.add(Dense(input_dim=10, output_dim=1)) #添加隐藏层(10节点)到输出层(1节点)的连接
model.add(Activation('sigmoid'))
model.compile(loss = 'binary_crossentropy', optimizer='adam')
model.fit(x, y, nb_epoch = 1000, batch_size = 10)
yp = model.predict_classes(x).reshape(len(y))
from cm_plot import *
cm_plot(y,yp).show()
# cm_plot.py 文件,包括了混淆矩阵可视化函数, # 放置在python的site-packages 目录,供调用 # 例如:~/anaconda2/lib/python2.7/site-packages #-*- coding: utf-8 -*- def cm_plot(y, yp): from sklearn.metrics import confusion_matrix #导入混淆矩阵函数 cm = confusion_matrix(y, yp) #混淆矩阵 import matplotlib.pyplot as plt #导入作图库 plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。 plt.colorbar() #颜色标签 for x in range(len(cm)): #数据标签 for y in range(len(cm)): plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') #坐标轴标签 plt.xlabel('Predicted label') #坐标轴标签 return plt """ 作者:温故知新的骆驼 链接:https://www.jianshu.com/p/498ea0d8017d 來源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 """
版权声明:本文为zhjulia123原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。