练习
计算φ ( 60 ) \varphi \left( 60 \right)φ(60)。
解
将60 6060写成标准分解式
60 = 2 2 × 3 × 5 60={{2}^{2}}\times 3\times 560=22×3×5- 法一(计算过程中出现分式)
φ ( 60 ) = 60 × ( 1 − 1 2 ) ( 1 − 1 3 ) ( 1 − 1 5 ) = 60 × 1 2 × 2 3 × 4 5 = 16 \varphi \left( 60 \right)=60\times \left( 1-\frac{1}{2} \right)\left( 1-\frac{1}{3} \right)\left( 1-\frac{1}{5} \right)=60\times \frac{1}{2}\times \frac{2}{3}\times \frac{4}{5}=16φ(60)=60×(1−21)(1−31)(1−51)=60×21×32×54=16 - 法二(计算过程中不出现分式)
φ ( 60 ) = φ ( 2 2 ) φ ( 3 ) φ ( 5 ) = ( 2 2 − 2 ) ( 3 − 1 ) ( 5 − 1 ) = 2 × 2 × 4 = 16 \varphi \left( 60 \right)=\varphi \left( {{2}^{2}} \right)\varphi \left( 3 \right)\varphi \left( 5 \right)=\left( {{2}^{2}}-2 \right)\left( 3-1 \right)\left( 5-1 \right)=2\times 2\times 4=16φ(60)=φ(22)φ(3)φ(5)=(22−2)(3−1)(5−1)=2×2×4=16
- 法一(计算过程中出现分式)
设n ∈ Z > 0 n\in {{\mathbb{Z}}_{>0}}n∈Z>0,φ ( n ) = 8 \varphi \left( n \right)=8φ(n)=8,求n nn。
解
设n nn的标准分解式为
n = p 1 e 1 ⋯ p k e k n={{p}_{1}}^{{{e}_{1}}}\cdots {{p}_{k}}^{{{e}_{k}}}n=p1e1⋯pkek
则有
φ ( n ) = [ p 1 e 1 − 1 ( p 1 − 1 ) ] ⋯ [ p k e k − 1 ( p k − 1 ) ] = 8 ⇒ ( p i − 1 ) ∣ 8 ⇒ p i − 1 ≤ 8 , p i ≤ 9 ⇒ p i ∈ { 2 , 3 , 5 , 7 } ⇒ p i − 1 ∈ { 1 , 2 , 4 , 6 } \begin{aligned} & \varphi \left( n \right)=\left[ {{p}_{1}}^{{{e}_{1}}-1}\left( {{p}_{1}}-1 \right) \right]\cdots \left[ {{p}_{k}}^{{{e}_{k}}-1}\left( {{p}_{k}}-1 \right) \right]=8 \\ & \Rightarrow \left. \left( {{p}_{i}}-1 \right) \right|8\text{ }\Rightarrow {{p}_{i}}-1\le 8,\text{ }{{p}_{i}}\le 9 \\ & \Rightarrow \text{ }{{p}_{i}}\in \left\{ 2,3,5,7 \right\} \\ & \Rightarrow {{p}_{i}}-1\in \left\{ 1,2,4,6 \right\} \\ \end{aligned}φ(n)=[p1e1−1(p1−1)]⋯[pkek−1(pk−1)]=8⇒(pi−1)∣8 ⇒pi−1≤8, pi≤9⇒ pi∈{2,3,5,7}⇒pi−1∈{1,2,4,6}
由于6 ∣ 8 6\cancel{|}86∣8,因此有p i − 1 ≠ 6 ⇒ p i ≠ 7 {{p}_{i}}-1\ne 6\text{ }\Rightarrow \text{ }{{p}_{i}}\ne 7pi−1=6 ⇒ pi=7。因此设n = 2 a 3 b 5 c n={{2}^{a}}{{3}^{b}}{{5}^{c}}n=2a3b5c,a , b , c ≥ 0 a,b,c\ge 0a,b,c≥0。
若b ≥ 2 , 3 ∣ 3 b − 1 ∣ φ ( 3 b ) ∣ 8 b\ge 2,\text{ }\left. 3 \right|\left. {{3}^{b-1}} \right|\left. \varphi \left( {{3}^{b}} \right) \right|8b≥2, 3∣3b−1∣∣φ(3b)∣∣8,矛盾,于是有b ∈ { 0 , 1 } b\in \left\{ 0,1 \right\}b∈{0,1}
若c ≥ 2 c\ge 2c≥2,5 ∣ 5 c − 1 ∣ φ ( 5 c ) ∣ 8 \left. \left. 5 \right|{{5}^{c-1}} \right|\left. \varphi \left( {{5}^{c}} \right) \right|85∣5c−1∣∣φ(5c)∣8,矛盾,于是有c ∈ { 0 , 1 } c\in \left\{ 0,1 \right\}c∈{0,1}
进行分类讨论如下。- 若b = c = 0 b=c=0b=c=0
- 当a = 0 a=0a=0时,n = 1 n=1n=1
φ ( n ) = φ ( 1 ) = 1 ≠ 8 \varphi \left( n \right)=\varphi \left( 1 \right)=1\ne 8φ(n)=φ(1)=1=8 - 当a ≠ 0 a\ne 0a=0时,n = 2 a n={{2}^{a}}n=2a
φ ( n ) = 2 a − 1 ( 2 − 1 ) = 2 a − 1 = 8 ⇒ a − 1 = 3 ⇒ a = 4 ⇒ n = 2 4 = 16 \varphi \left( n \right)={{2}^{a-1}}\left( 2-1 \right)={{2}^{a-1}}=8\text{ }\Rightarrow \text{ }a-1=3\text{ }\Rightarrow \text{ }a=4\text{ }\Rightarrow \text{ }n={{2}^{4}}=16φ(n)=2a−1(2−1)=2a−1=8 ⇒ a−1=3 ⇒ a=4 ⇒ n=24=16
- 当a = 0 a=0a=0时,n = 1 n=1n=1
- 若b = 0 , c = 1 b=0,\text{ }c=1b=0, c=1
- 当a = 0 a=0a=0时,有n = 5 n=5n=5
φ ( n ) = φ ( 5 ) = 4 \varphi \left( n \right)=\varphi \left( 5 \right)=4φ(n)=φ(5)=4 - 当a ≠ 0 a\ne 0a=0时,则有n = 2 a × 5 n={{2}^{a}}\times 5n=2a×5
φ ( n ) = 2 a − 1 ( 2 − 1 ) ( 5 − 1 ) = 2 a + 1 = 8 ⇒ a + 1 = 3 ⇒ a = 2 ⇒ n = 2 2 ⋅ 5 = 20 \varphi \left( n \right)={{2}^{a-1}}\left( 2-1 \right)\left( 5-1 \right)={{2}^{a+1}}=8\text{ }\Rightarrow \text{ }a+1=3\text{ }\Rightarrow \text{ }a=2\text{ }\Rightarrow \text{ }n={{2}^{2}}\centerdot 5=20φ(n)=2a−1(2−1)(5−1)=2a+1=8 ⇒ a+1=3 ⇒ a=2 ⇒ n=22⋅5=20
- 当a = 0 a=0a=0时,有n = 5 n=5n=5
- 若b = 1 , c = 0 b=1,\text{ }c=0b=1, c=0
- 当a = 0 a=0a=0时,有n = 3 n=3n=3
φ ( n ) = φ ( 3 ) = 2 \varphi \left( n \right)=\varphi \left( 3 \right)=2φ(n)=φ(3)=2 - 当a ≠ 0 a\ne 0a=0时,则有n = 2 a × 3 n={{2}^{a}}\times 3n=2a×3
φ ( n ) = 2 a − 1 ( 2 − 1 ) ( 3 − 1 ) = 2 a = 8 ⇒ a = 3 ⇒ n = 2 3 × 3 = 24 \varphi \left( n \right)={{2}^{a-1}}\left( 2-1 \right)\left( 3-1 \right)={{2}^{a}}=8\text{ }\Rightarrow \text{ }a=3\text{ }\Rightarrow \text{ }n={{2}^{3}}\times 3=24φ(n)=2a−1(2−1)(3−1)=2a=8 ⇒ a=3 ⇒ n=23×3=24
- 当a = 0 a=0a=0时,有n = 3 n=3n=3
- 若b = 1 , c = 1 b=1,\text{ }c=1b=1, c=1
- 当a = 0 a=0a=0时,n = 5 × 3 = 15 n=5\times 3=15n=5×3=15
φ ( 15 ) = φ ( 5 ) φ ( 3 ) = ( 5 − 1 ) ( 3 − 1 ) = 8 \text{ }\varphi \left( 15 \right)=\varphi \left( 5 \right)\varphi \left( 3 \right)=\left( 5-1 \right)\left( 3-1 \right)=8 φ(15)=φ(5)φ(3)=(5−1)(3−1)=8 - 当a > 0 a>0a>0时,有n = 2 a × 5 × 3 n={{2}^{a}}\times 5\times 3n=2a×5×3
φ ( n ) = 2 a − 1 ( 2 − 1 ) ( 5 − 1 ) ( 3 − 1 ) = 2 a − 1 × 8 = 8 ⇒ a = 1 , n = 2 × 5 × 3 = 30 \begin{aligned} & \varphi \left( n \right)={{2}^{a-1}}\left( 2-1 \right)\left( 5-1 \right)\left( 3-1 \right)={{2}^{a-1}}\times 8=8 \\ & \Rightarrow a=1,\text{ }n=2\times 5\times 3=30 \\ \end{aligned}φ(n)=2a−1(2−1)(5−1)(3−1)=2a−1×8=8⇒a=1, n=2×5×3=30
- 当a = 0 a=0a=0时,n = 5 × 3 = 15 n=5\times 3=15n=5×3=15
- 若b = c = 0 b=c=0b=c=0
综上,n nn的可能取值集为{ 15 , 16 , 20 , 24 , 30 } \left\{ 15,16,20,24,30 \right\}{15,16,20,24,30}。
求3 1492 {{3}^{1492}}31492的最后两位,即3 1492 m o d 100 {{3}^{1492}}\bmod 10031492mod100。
解
gcd ( 3 , 100 ) = 1 \gcd \left( 3,100 \right)=1gcd(3,100)=1,由欧拉定理有
3 φ ( 100 ) ≡ 1 ( m o d 100 ) {{3}^{\varphi \left( 100 \right)}}\equiv 1\left( \bmod 100 \right)3φ(100)≡1(mod100)
由引理4的推广有
φ ( 100 ) = φ ( 2 2 × 5 2 ) = φ ( 2 2 ) × φ ( 5 2 ) = 2 2 − 1 ( 2 − 1 ) 5 2 − 1 ( 5 − 1 ) = 40 \varphi \left( 100 \right)=\varphi \left( {{2}^{2}}\times {{5}^{2}} \right)=\varphi \left( {{2}^{2}} \right)\times \varphi \left( {{5}^{2}} \right)={{2}^{2-1}}\left( 2-1 \right){{5}^{2-1}}\left( 5-1 \right)=40φ(100)=φ(22×52)=φ(22)×φ(52)=22−1(2−1)52−1(5−1)=40
因此有
3 40 ≡ 1 ( m o d 100 ) {{3}^{40}}\equiv 1\left( \bmod 100 \right)340≡1(mod100)
1492 = 40 × 37 + 12 ⇒ 3 1492 = ( 3 40 ) 37 ⋅ 3 12 ≡ 1 37 ⋅ 3 12 ≡ 3 12 ( m o d 100 ) 3 12 = 9 6 = 81 3 ≡ ( − 19 ) 3 = − 361 × 19 ≡ 39 × 19 = 741 ≡ 41 ( m o d 100 ) \begin{aligned} & 1492=40\times 37+12\text{ }\Rightarrow \text{ }{{3}^{1492}}={{\left( {{3}^{40}} \right)}^{37}}\centerdot {{3}^{12}}\equiv {{1}^{37}}\centerdot {{3}^{12}}\equiv {{3}^{12}}\left( \bmod 100 \right) \\ & {{3}^{12}}={{9}^{6}}={{81}^{3}}\equiv {{\left( -19 \right)}^{3}}=-361\times 19\equiv 39\times 19=741\equiv 41\left( \bmod 100 \right) \\ \end{aligned}1492=40×37+12 ⇒ 31492=(340)37⋅312≡137⋅312≡312(mod100)312=96=813≡(−19)3=−361×19≡39×19=741≡41(mod100)
因此有
3 1492 ≡ 41 ( m o d 100 ) {{3}^{1492}}\equiv 41\left( \bmod 100 \right)31492≡41(mod100)
即3 1492 {{3}^{1492}}31492的最后两位是41。
设p pp是一个素数,p > 3 p>3p>3,求证2 p − 2 + 3 p − 2 + 6 p − 2 ≡ 1 ( m o d p ) {{2}^{p-2}}+{{3}^{p-2}}+{{6}^{p-2}}\equiv 1\left( \bmod p \right)2p−2+3p−2+6p−2≡1(modp)
证明
设2 p − 2 + 3 p − 2 + 6 p − 2 ≡ a ( m o d p ) {{2}^{p-2}}+{{3}^{p-2}}+{{6}^{p-2}}\equiv a\left( \bmod p \right)2p−2+3p−2+6p−2≡a(modp),a ∈ Z > 0 a\in {{\mathbb{Z}}_{>0}}a∈Z>0最小。则有
6 ⋅ 2 p − 2 + 6 ⋅ 3 p − 2 + 6 ⋅ 6 p − 2 ≡ 6 a ( m o d p ) ⇒ 3 ⋅ 2 p − 1 + 2 ⋅ 3 p − 1 + 6 p − 1 ≡ 6 a ( m o d p ) \begin{aligned} & \text{ }6\centerdot {{2}^{p-2}}+6\centerdot {{3}^{p-2}}+6\centerdot {{6}^{p-2}}\equiv 6a\left( \bmod p \right) \\ & \Rightarrow 3\centerdot {{2}^{p-1}}+2\centerdot {{3}^{p-1}}+{{6}^{p-1}}\equiv 6a\left( \bmod p \right) \\ \end{aligned} 6⋅2p−2+6⋅3p−2+6⋅6p−2≡6a(modp)⇒3⋅2p−1+2⋅3p−1+6p−1≡6a(modp)
由于p pp是素数且p > 3 p>3p>3,因此有
gcd ( p , 2 ) = gcd ( p , 3 ) = gcd ( p , 6 ) = 1 \gcd \left( p,2 \right)=\gcd \left( p,3 \right)=\gcd \left( p,6 \right)=1gcd(p,2)=gcd(p,3)=gcd(p,6)=1
即p ∣ 2 , p ∣ 3 , p ∣ 6 p\cancel{|}2,\text{ }p\cancel{|}3,\text{ }p\cancel{|}6p∣2, p∣3, p∣6,由费马小定理有
2 p − 1 ≡ 1 ( m o d p ) , 3 p − 1 ≡ 1 ( m o d p ) , 6 p − 1 ≡ 1 ( m o d p ) {{2}^{p-1}}\equiv 1\left( \bmod p \right),\text{ }{{3}^{p-1}}\equiv 1\left( \bmod p \right),\text{ }{{6}^{p-1}}\equiv 1\left( \bmod p \right)2p−1≡1(modp), 3p−1≡1(modp), 6p−1≡1(modp)
于是有
6 a ≡ 3 ⋅ 2 p − 1 + 2 ⋅ 3 p − 1 + 6 p − 1 ≡ 3 ⋅ 1 + 2 ⋅ 1 + 1 ≡ 6 ( m o d p ) 6a\equiv 3\centerdot {{2}^{p-1}}+2\centerdot {{3}^{p-1}}+{{6}^{p-1}}\equiv 3\centerdot 1+2\centerdot 1+1\equiv 6\left( \bmod p \right)6a≡3⋅2p−1+2⋅3p−1+6p−1≡3⋅1+2⋅1+1≡6(modp)
由a ∈ Z > 0 a\in {{\mathbb{Z}}_{>0}}a∈Z>0的最小性,解得a = 1 a=1a=1。
解3 x ≡ 7 ( m o d 10 ) 3x\equiv 7\left( \bmod 10 \right)3x≡7(mod10)。
解法一(解二元一次不定方程法)
问题等价于求解3 x + 10 y = 7 3x+10y=73x+10y=7的整数解。
gcd ( 3 , 10 ) ∣ 7 \left. \gcd \left( 3,10 \right) \right|7gcd(3,10)∣7,因此不定方程有整数解。
10 = 3 × 3 + 1 10=3\times 3+110=3×3+1
P 0 = 1 , P 1 = 3 ; Q 0 = 0 , Q 1 = 1 {{P}_{0}}=1,\text{ }{{P}_{1}}=3;\text{ }{{Q}_{0}}=0,\text{ }{{Q}_{1}}=1P0=1, P1=3; Q0=0, Q1=1
因此3 x + 10 y = 1 3x+10y=13x+10y=1有特解( ( − 1 ) 1 P 1 , ( − 1 ) 1 − 1 Q 1 ) = ( − 3 , 1 ) \left( {{\left( -1 \right)}^{1}}{{P}_{1}},\text{ }{{\left( -1 \right)}^{1-1}}{{Q}_{1}} \right)=\left( -3,1 \right)((−1)1P1, (−1)1−1Q1)=(−3,1)
3 x + 10 y = 7 3x+10y=73x+10y=7有特解( − 3 × 7 , 1 × 7 ) = ( − 21 , 7 ) \left( -3\times 7,1\times 7 \right)=\left( -21,7 \right)(−3×7,1×7)=(−21,7)
3 x + 10 y = 7 3x+10y=73x+10y=7的通解为
{ x = − 21 − 10 t y = 7 + 3 t , ∀ t ∈ Z \left\{ \begin{aligned} & x=-21-10t \\ & y=7+3t \\ \end{aligned} \right.,\text{ }\forall t\in \mathbb{Z}{x=−21−10ty=7+3t, ∀t∈Z
因此3 x ≡ 7 ( m o d 10 ) 3x\equiv 7\left( \bmod 10 \right)3x≡7(mod10)的解为
x = − 21 − 10 t ≡ 9 ( m o d 10 ) x=-21-10t\equiv 9\left( \bmod 10 \right)x=−21−10t≡9(mod10)法二(同余法)
gcd ( 3 , 10 ) = 1 , φ ( 10 ) = φ ( 2 ) φ ( 5 ) = ( 2 − 1 ) ( 5 − 1 ) = 4 \gcd \left( 3,10 \right)=1,\text{ }\varphi \left( 10 \right)=\varphi \left( 2 \right)\varphi \left( 5 \right)=\left( 2-1 \right)\left( 5-1 \right)=4gcd(3,10)=1, φ(10)=φ(2)φ(5)=(2−1)(5−1)=4
由欧拉定理有
3 φ ( 10 ) ≡ 1 ( m o d 10 ) ⇔ 3 4 ≡ 1 ( m o d 10 ) {{3}^{\varphi \left( 10 \right)}}\equiv 1\left( \bmod 10 \right)\text{ }\Leftrightarrow \text{ }{{3}^{4}}\equiv 1\left( \bmod 10 \right)3φ(10)≡1(mod10) ⇔ 34≡1(mod10)
x = 1 ⋅ x ≡ 3 4 x = 3 3 ⋅ ( 3 x ) ≡ 3 3 × 7 = 27 × 7 ≡ 7 × 7 = 49 ≡ 9 ( m o d 10 ) x=1\centerdot x\equiv {{3}^{4}}x={{3}^{3}}\centerdot \left( 3x \right)\equiv {{3}^{3}}\times 7=27\times 7\equiv 7\times 7=49\equiv 9\left( \bmod 10 \right)x=1⋅x≡34x=33⋅(3x)≡33×7=27×7≡7×7=49≡9(mod10)
在F 13 = Z / 13 Z = { 0 ‾ , 1 ‾ , 2 ‾ , ⋯ , 12 ‾ } {{\mathbb{F}}_{13}}=\mathbb{Z}/13\mathbb{Z}=\left\{ \overline{0},\overline{1},\overline{2},\cdots ,\overline{12} \right\}F13=Z/13Z={0,1,2,⋯,12}中,求1 ‾ 5 ‾ \frac{\overline{1}}{\overline{5}}51。
解
通过解二元一次不定方程来求解的方法可见博文初等数论 课堂笔记 第三章 – 剩余类,剩余类环,完全剩余系中剩余类,剩余类环一节的例子3。这里介绍另一种解法。
由费马小定理,有
5 12 ≡ 1 ( m o d 13 ) {{5}^{12}}\equiv 1\left( \bmod 13 \right)512≡1(mod13)
于是在F 13 {{\mathbb{F}}_{13}}F13中,有
1 ‾ 5 ‾ = 5 12 ‾ 5 ‾ = 5 11 ‾ 5 11 = ( 5 2 ) 5 × 5 = 25 5 × 5 ≡ ( − 1 ) 5 × 5 = − 5 ≡ 8 ( m o d 13 ) ⇒ 5 11 ‾ = 8 ‾ } ⇒ 1 ‾ 5 ‾ = 8 ‾ \left. \begin{matrix} \begin{aligned} & \frac{\overline{1}}{\overline{5}}=\frac{\overline{{{5}^{12}}}}{\overline{5}}=\overline{{{5}^{11}}} \\ & \\ \end{aligned} \\ {{5}^{11}}={{\left( {{5}^{2}} \right)}^{5}}\times 5={{25}^{5}}\times 5\equiv {{\left( -1 \right)}^{5}}\times 5=-5\equiv 8\left( \bmod 13 \right)\text{ }\Rightarrow \text{ }\overline{{{5}^{11}}}=\overline{8} \\ \end{matrix} \right\}\text{ }\Rightarrow \text{ }\frac{\overline{1}}{\overline{5}}=\overline{8}51=5512=511511=(52)5×5=255×5≡(−1)5×5=−5≡8(mod13) ⇒ 511=8⎭⎪⎪⎪⎬⎪⎪⎪⎫ ⇒ 51=8
将纯循环小数0. 34 ‾ 0.\overline{34}0.34表示为有理数形式。
解
0. 34 ‾ = 0.343434 ⋯ = 0.34 + 0.0034 + 0.000034 + ⋯ = 0.34 + 0.34 × 0.01 + 0.34 × 0.01 2 + ⋯ = ∑ n = 0 ∞ 0.34 × ( 0.01 ) n = 0.34 1 − 0.01 = 34 99 \begin{aligned} & 0.\overline{34}=0.343434\cdots \\ & =0.34+0.0034+0.000034+\cdots \\ & =0.34+0.34\times 0.01+0.34\times {{0.01}^{2}}+\cdots \\ & =\sum\limits_{n=0}^{\infty }{0.34\times {{\left( 0.01 \right)}^{n}}} \\ & =\frac{0.34}{1-0.01} \\ & =\frac{34}{99} \\ \end{aligned}0.34=0.343434⋯=0.34+0.0034+0.000034+⋯=0.34+0.34×0.01+0.34×0.012+⋯=n=0∑∞0.34×(0.01)n=1−0.010.34=9934
将混循环小数0.1 3 ‾ 0.1\overline{3}0.13表示为有理数。
解
0.1 3 ‾ = 0.1333 ⋯ = 0.1 + 0.03 + 0.003 + 0.0003 + ⋯ = 0.1 + ∑ n = 0 ∞ 0.03 × ( 0.1 ) n = 0.1 + 0.03 1 − 0.1 = 2 15 \begin{aligned} & 0.1\overline{3}=0.1333\cdots \\ & =0.1+0.03+0.003+0.0003+\cdots \\ & =0.1+\sum\limits_{n=0}^{\infty }{0.03\times {{\left( 0.1 \right)}^{n}}} \\ & =0.1+\frac{0.03}{1-0.1} \\ & =\frac{2}{15} \\ \end{aligned}0.13=0.1333⋯=0.1+0.03+0.003+0.0003+⋯=0.1+n=0∑∞0.03×(0.1)n=0.1+1−0.10.03=152
如果今天是星期一,问从今天开始,再过10 10 10 {{10}^{{{10}^{10}}}}101010天是星期几。
解
问题等价于求解10 10 10 ≡ a ( m o d 7 ) {{10}^{{{10}^{10}}}}\equiv a\left( \bmod 7 \right)101010≡a(mod7)其中a ∈ Z > 0 a\in {{\mathbb{Z}}_{>0}}a∈Z>0最小。
7 77是素数,由欧拉定理,有
10 6 ≡ 1 ( m o d 7 ) {{10}^{6}}\equiv 1\left( \bmod 7 \right)106≡1(mod7)
因此有
10 10 10 = ( 10 10 ) 10 9 = ( 10 6 × 10 4 ) 10 9 ≡ ( 10 4 ) 10 9 ( m o d 7 ) ( 10 4 ) 10 9 = ( 10 40 ) 10 8 = [ ( 10 6 ) 6 × 10 4 ] 10 8 ≡ ( 10 4 ) 10 8 ( m o d 7 ) ( 10 4 ) 10 8 = ( 10 40 ) 10 7 = [ ( 10 6 ) 6 × 10 4 ] 10 7 ≡ ( 10 4 ) 10 7 ( m o d 7 ) \begin{aligned} & {{10}^{{{10}^{10}}}}={{\left( {{10}^{10}} \right)}^{{{10}^{9}}}}={{\left( {{10}^{6}}\times {{10}^{4}} \right)}^{{{10}^{9}}}}\equiv {{\left( {{10}^{4}} \right)}^{{{10}^{9}}}}\left( \bmod 7 \right) \\ & {{\left( {{10}^{4}} \right)}^{{{10}^{9}}}}={{\left( {{10}^{40}} \right)}^{{{10}^{8}}}}={{\left[ {{\left( {{10}^{6}} \right)}^{6}}\times {{10}^{4}} \right]}^{{{10}^{8}}}}\equiv {{\left( {{10}^{4}} \right)}^{{{10}^{8}}}}\left( \bmod 7 \right) \\ & {{\left( {{10}^{4}} \right)}^{{{10}^{8}}}}={{\left( {{10}^{40}} \right)}^{{{10}^{7}}}}={{\left[ {{\left( {{10}^{6}} \right)}^{6}}\times {{10}^{4}} \right]}^{{{10}^{7}}}}\equiv {{\left( {{10}^{4}} \right)}^{{{10}^{7}}}}\left( \bmod 7 \right) \\ \end{aligned}101010=(1010)109=(106×104)109≡(104)109(mod7)(104)109=(1040)108=[(106)6×104]108≡(104)108(mod7)(104)108=(1040)107=[(106)6×104]107≡(104)107(mod7)
依此类推,可得
( 10 4 ) 10 7 ≡ ( 10 4 ) 10 6 ≡ ⋯ ≡ ( 10 4 ) 10 1 ≡ ( 10 4 ) 10 0 = 10 4 ( m o d 7 ) {{\left( {{10}^{4}} \right)}^{{{10}^{7}}}}\equiv {{\left( {{10}^{4}} \right)}^{{{10}^{6}}}}\equiv \cdots \equiv {{\left( {{10}^{4}} \right)}^{{{10}^{1}}}}\equiv {{\left( {{10}^{4}} \right)}^{{{10}^{0}}}}={{10}^{4}}\left( \bmod 7 \right)(104)107≡(104)106≡⋯≡(104)101≡(104)100=104(mod7)- 法一(直接方法,推荐)
于是有10 10 10 ≡ 10 4 = 100 2 ≡ 2 2 = 4 ( m o d 7 ) {{10}^{{{10}^{10}}}}\equiv {{10}^{4}}={{100}^{2}}\equiv {{2}^{2}}=4\left( \bmod 7 \right)101010≡104=1002≡22=4(mod7)
从星期一的今天再过10 10 10 {{10}^{{{10}^{10}}}}101010天是星期五。 - 法二(绕弯路方法,不推荐)
于是有
10 10 10 ≡ 10 4 ≡ a ( m o d 7 ) ⇒ 1 ≡ 10 6 ≡ 100 a ( m o d 7 ) \begin{aligned} & \text{ }{{10}^{{{10}^{10}}}}\equiv {{10}^{4}}\equiv a\left( \bmod 7 \right) \\ & \Rightarrow 1\equiv {{10}^{6}}\equiv 100a\left( \bmod 7 \right) \\ \end{aligned} 101010≡104≡a(mod7)⇒1≡106≡100a(mod7)
7 ∣ 100 7\cancel{|}1007∣100,由费马小定理,有
100 7 − 1 = 100 6 ≡ 1 ( m o d 7 ) {{100}^{7-1}}={{100}^{6}}\equiv 1\left( \bmod 7 \right)1007−1=1006≡1(mod7)
于是有
a = 1 ⋅ a ≡ 100 6 a = 100 5 × ( 100 a ) ≡ 100 5 = 10 10 ≡ 3 10 = 9 5 ≡ 2 5 = 32 ≡ 4 ( m o d 7 ) a=1\centerdot a\equiv {{100}^{6}}a={{100}^{5}}\times \left( 100a \right)\equiv {{100}^{5}}={{10}^{10}}\equiv {{3}^{10}}={{9}^{5}}\equiv {{2}^{5}}=32\equiv 4\left( \bmod 7 \right)a=1⋅a≡1006a=1005×(100a)≡1005=1010≡310=95≡25=32≡4(mod7)
由a ∈ Z > 0 a\in {{\mathbb{Z}}_{>0}}a∈Z>0的最小性,解得a = 4 a=4a=4。因此最终解得
10 10 10 ≡ 4 ( m o d 7 ) {{10}^{{{10}^{10}}}}\equiv 4\left( \bmod 7 \right)101010≡4(mod7)
从星期一的今天再过10 10 10 {{10}^{{{10}^{10}}}}101010天是星期五。
- 法一(直接方法,推荐)
求( 12371 56 + 34 ) 28 {{\left( {{12371}^{56}}+34 \right)}^{28}}(1237156+34)28被111 111111除的余数是多少。
解
( 12371 56 + 34 ) 28 ≡ ( 50 56 + 34 ) 28 ( ∵ 12371 = 111 × 111 + 50 ) = ( 2500 28 + 34 ) 28 ≡ ( 58 28 + 34 ) 28 ( ∵ 2500 = 111 × 22 + 58 ) = ( 3364 14 + 34 ) 28 ≡ ( 34 14 + 34 ) 28 ( ∵ 3364 = 111 × 30 + 34 ) = ( 1156 7 + 34 ) 28 ≡ ( 46 7 + 34 ) 28 ( ∵ 1156 = 111 × 10 + 46 ) = ( 2116 3 × 46 + 34 ) 28 ≡ ( 7 3 × 46 + 34 ) 28 ( ∵ 2116 = 111 × 19 + 7 ) ≡ ( 10 × 46 + 34 ) 28 ( ∵ 7 3 = 343 = 111 × 3 + 10 ) = 494 28 ≡ 50 28 ( ∵ 494 = 111 × 4 + 50 ) = 2500 14 ≡ 58 14 ( ∵ 2500 = 111 × 22 + 58 ) = 3364 7 ≡ 34 7 ( ∵ 3364 = 111 × 30 + 34 ) = 1156 3 × 34 ≡ 46 3 × 34 ( ∵ 1156 = 111 × 10 + 46 ) = ( 46 2 ) × ( 46 × 34 ) ≡ 7 × 10 ( ∵ 2116 = 111 × 19 + 7 , 46 × 34 = 111 × 14 + 10 ) = 70 ( m o d 111 ) \begin{aligned} & \text{ }{{\left( {{12371}^{56}}+34 \right)}^{28}} \\ & \equiv {{\left( {{50}^{56}}+34 \right)}^{28}}\text{ }\left( \because 12371=111\times 111+50 \right) \\ & ={{\left( {{2500}^{28}}+34 \right)}^{28}} \\ & \equiv {{\left( {{58}^{28}}+34 \right)}^{28}}\text{ }\left( \because 2500=111\times 22+58 \right) \\ & ={{\left( {{3364}^{14}}+34 \right)}^{28}} \\ & \equiv {{\left( {{34}^{14}}+34 \right)}^{28}}\text{ }\left( \because 3364=111\times 30+34 \right) \\ & ={{\left( {{1156}^{7}}+34 \right)}^{28}} \\ & \equiv {{\left( {{46}^{7}}+34 \right)}^{28}}\text{ }\left( \because 1156=111\times 10+46 \right) \\ & ={{\left( {{2116}^{3}}\times 46+34 \right)}^{28}} \\ & \equiv {{\left( {{7}^{3}}\times 46+34 \right)}^{28}}\text{ }\left( \because 2116=111\times 19+7 \right) \\ & \equiv {{\left( 10\times 46+34 \right)}^{28}}\text{ }\left( \because {{7}^{3}}=343=111\times 3+10 \right) \\ & ={{494}^{28}} \\ & \equiv {{50}^{28}}\text{ }\left( \because 494=111\times 4+50 \right) \\ & ={{2500}^{14}} \\ & \equiv {{58}^{14}}\text{ }\left( \because 2500=111\times 22+58 \right) \\ & ={{3364}^{7}} \\ & \equiv {{34}^{7}}\text{ }\left( \because 3364=111\times 30+34 \right) \\ & ={{1156}^{3}}\times 34 \\ & \equiv {{46}^{3}}\times 34\text{ }\left( \because 1156=111\times 10+46 \right) \\ & =\left( {{46}^{2}} \right)\times \left( 46\times 34 \right) \\ & \equiv 7\times 10\text{ }\left( \because 2116=111\times 19+7,\text{ }46\times 34=111\times 14+10 \right) \\ & =70\left( \bmod 111 \right) \\ \end{aligned} (1237156+34)28≡(5056+34)28 (∵12371=111×111+50)=(250028+34)28≡(5828+34)28 (∵2500=111×22+58)=(336414+34)28≡(3414+34)28 (∵3364=111×30+34)=(11567+34)28≡(467+34)28 (∵1156=111×10+46)=(21163×46+34)28≡(73×46+34)28 (∵2116=111×19+7)≡(10×46+34)28 (∵73=343=111×3+10)=49428≡5028 (∵494=111×4+50)=250014≡5814 (∵2500=111×22+58)=33647≡347 (∵3364=111×30+34)=11563×34≡463×34 (∵1156=111×10+46)=(462)×(46×34)≡7×10 (∵2116=111×19+7, 46×34=111×14+10)=70(mod111)
求( 12371 5600 + 34 ) 28 {{\left( {{12371}^{5600}}+34 \right)}^{28}}(123715600+34)28被111 111111除的余数是多少。
解(先用欧拉定理压缩指数)
111 = 3 × 37 gcd ( 12371 , 3 ) = 1 ⇒ 12371 φ ( 3 ) = 12371 2 ≡ 1 ( m o d 3 ) ⇒ ( 12371 2 ) 18 = 12371 36 ≡ 1 ( m o d 3 ) gcd ( 12371 , 37 ) = 1 ⇒ 12371 φ ( 37 ) = 12371 36 ≡ 1 ( m o d 36 ) } ⇒ 12371 36 ≡ 1 ( m o d ( l c m ( 3 , 36 ) = 111 ) ) \left. \begin{matrix} 111=3\times 37 \\ \begin{aligned} & \gcd \left( 12371,3 \right)=1\text{ }\Rightarrow \text{ }{{12371}^{\varphi \left( 3 \right)}}={{12371}^{2}}\equiv 1\left( \bmod 3 \right)\text{ } \\ & \Rightarrow \text{ }{{\left( {{12371}^{2}} \right)}^{18}}={{12371}^{36}}\equiv 1\left( \bmod 3 \right) \\ & \\ \end{aligned} \\ \gcd \left( 12371,37 \right)=1\text{ }\Rightarrow \text{ }{{12371}^{\varphi \left( 37 \right)}}={{12371}^{36}}\equiv 1\left( \bmod 36 \right) \\ \end{matrix} \right\}\text{ }\Rightarrow \text{ }{{12371}^{36}}\equiv 1\left( \text{ }\bmod \left( lcm\left( 3,36 \right)=111 \right)\text{ } \right)111=3×37gcd(12371,3)=1 ⇒ 12371φ(3)=123712≡1(mod3) ⇒ (123712)18=1237136≡1(mod3)gcd(12371,37)=1 ⇒ 12371φ(37)=1237136≡1(mod36)⎭⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎫ ⇒ 1237136≡1( mod(lcm(3,36)=111) )
因此有
( 12371 5600 + 34 ) 28 = ( ( 12371 36 ) 155 × ( 12371 ) 20 + 34 ) 28 ≡ ( ( 12371 ) 20 + 34 ) 28 ( ∵ 12371 36 ≡ 1 ( m o d 111 ) ) ≡ ( 50 20 + 34 ) 28 ( ∵ 12371 = 111 × 111 + 50 ) = [ ( 50 2 ) 10 + 34 ] 28 ≡ ( 58 10 + 34 ) 28 ( ∵ 50 2 = 111 × 22 + 58 ) = [ ( 58 2 ) 5 + 34 ] 28 ≡ ( 34 5 + 34 ) 28 ( ∵ 58 2 = 111 × 30 + 34 ) = [ ( 34 2 ) 2 × 34 + 34 ] 28 = [ ( ( 34 2 ) 2 + 1 ) × 34 ] 28 ≡ [ ( 46 2 + 1 ) × 34 ] 28 ( ∵ 34 2 = 111 × 10 + 46 ) ≡ ( 8 × 34 ) 28 ( ∵ 46 2 + 1 = 2117 = 111 × 19 + 8 ) ≡ 50 28 ( ∵ 8 × 34 = 272 = 111 × 2 + 50 ) ≡ 70 ( m o d 111 ) \begin{aligned} & \text{ }{{\left( {{12371}^{5600}}+34 \right)}^{28}} \\ & ={{\left( {{\left( {{12371}^{36}} \right)}^{155}}\times {{\left( 12371 \right)}^{20}}+34 \right)}^{28}} \\ & \equiv {{\left( {{\left( 12371 \right)}^{20}}+34 \right)}^{28}}\text{ }\left( \because {{12371}^{36}}\equiv 1\left( \bmod 111 \right) \right) \\ & \equiv {{\left( {{50}^{20}}+34 \right)}^{28}}\text{ }\left( \because 12371=111\times 111+50 \right) \\ & ={{\left[ {{\left( {{50}^{2}} \right)}^{10}}+34 \right]}^{28}} \\ & \equiv {{\left( {{58}^{10}}+34 \right)}^{28}}\text{ }\left( \because {{50}^{2}}=111\times 22+58 \right) \\ & ={{\left[ {{\left( {{58}^{2}} \right)}^{5}}+34 \right]}^{28}} \\ & \equiv {{\left( {{34}^{5}}+34 \right)}^{28}}\text{ }\left( \because {{58}^{2}}=111\times 30+34 \right) \\ & ={{\left[ {{\left( {{34}^{2}} \right)}^{2}}\times 34+34 \right]}^{28}} \\ & ={{\left[ \left( {{\left( {{34}^{2}} \right)}^{2}}+1 \right)\times 34 \right]}^{28}} \\ & \equiv {{\left[ \left( {{46}^{2}}+1 \right)\times 34 \right]}^{28}}\text{ }\left( \because {{34}^{2}}=111\times 10+46 \right) \\ & \equiv {{\left( 8\times 34 \right)}^{28}}\text{ }\left( \because {{46}^{2}}+1=2117=111\times 19+8 \right) \\ & \equiv {{50}^{28}}\text{ }\left( \because 8\times 34=272=111\times 2+50 \right) \\ & \equiv 70\left( \bmod 111 \right) \\ \end{aligned} (123715600+34)28=((1237136)155×(12371)20+34)28≡((12371)20+34)28 (∵1237136≡1(mod111))≡(5020+34)28 (∵12371=111×111+50)=[(502)10+34]28≡(5810+34)28 (∵502=111×22+58)=[(582)5+34]28≡(345+34)28 (∵582=111×30+34)=[(342)2×34+34]28=[((342)2+1)×34]28≡[(462+1)×34]28 (∵342=111×10+46)≡(8×34)28 (∵462+1=2117=111×19+8)≡5028 (∵8×34=272=111×2+50)≡70(mod111)