GRU - 文本情感分类

代码在 给一个拥抱
网络结构

inp = Input(shape=(maxlen,))
x = Embedding(max_features, embed_size)(inp)
x = Bidirectional(CuDNNGRU(64, return_sequences=True))(x)
x = GlobalMaxPool1D()(x)
x = Dense(16, activation="relu")(x)
x = Dropout(0.1)(x)
x = Dense(1, activation="sigmoid")(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=[auc])
print(model.summary())
Layer (type)Output ShapeParam #
input_1 (InputLayer)(None, 70)0
embedding_1 (Embedding)(None, 70, 300)28500000
bidirectional_1 (Bidirectional)(None, 70, 128)140544
global_max_pooling1d_1(GlobalMaxPool1D)(None, 128)0
dense_1 (Dense)(None, 16)2064
dropout_1 (Dropout)(None, 16)0
dense_2 (Dense)(None, 1)17
Total params28,642,625
Trainable params28,642,625
Non-trainable params0

版权声明:本文为ACBattle原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。