pytorch 多GPU训练

pytorch 提供两种多GPU训练方案:nn.DataParallel 和 nn.DistributedDataParallel. 

nn.DataParallel

(支持单机多卡)很容易使用,但是速度慢(主要原因是它采用parameter server 模式,一张主卡作为reducer,负载不均衡,主卡成为训练瓶颈)

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

input_size = 5
output_size = 2
batch_size = 30
data_size = 100

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

class RandomDataset(Dataset):
    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)


    def __getitem__(self, index):
        return self.data[index]


    def __len__(self):
        return self.len
# dataloader
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)

class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)


    def forward(self, input):
        output = self.fc(input)
        print("\tIn Model: input size", input.size(),
              "output size", output.size())
        return output


model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  # 将batchsize 30 分配到N个GPU上运行
  model = nn.DataParallel(model)
model.to(device)

for data in rand_loader:
    input = data.to(device)
    output = model(input)
    print("Outside: input size", input.size(),
          "output_size", output.size())

nn.DistributedDataParallel

(支持单机多卡和多机多卡)采用All-reduce模式:
复制模型到多个GPU上,每个GPU通过一个进程来控制,进程之间互相通信,只有梯度信息是需要不同进程gpu之间通信,所有瓶颈限制没有那么严重。
在训练时,每个进程/GPU load 自己的minibatch数据(所以要用distributedsampler), 每个GPU做自己独立的前向运算,反向传播时梯度all-reduce在各个GPU之间,各个节点得到平均梯度,保证各个GPU上的模型权重同步。 多进程之间同步信息通信是通过 distributed.init_process_group实现,找到主进程和总的进程数,总的进程数称为world_size。
 
一种方式是通过使用multiprocessing:
# 每个进程run一次train(i, args), i在(0 到 args.gpus-1)的范围。
def train(local_rank, args):
    rank = args.nodes * args.gpus + local_rank #得到全局rank  
    # 初始化进程,join 其他进程,pytorch docs解释nccl 通讯后台 backend 是最快的。  
    # https://pytorch.org/docs/stable/distributed.html 
    dist.init_process_group(                                   
        backend='nccl',                                         
                init_method='env://',                                   
        world_size=args.world_size,                              
        rank=rank                                               
    )                                                          
    
    torch.manual_seed(0)#设置随机种子每个进程中,使得每个进程以同样的参数做初始化
    model = model()
    torch.cuda.set_device(gpu)
    model.cuda(gpu)
    batch_size = 100
    criterion = nn.CrossEntropyLoss().cuda(gpu)
    optimizer = torch.optim.SGD(model.parameters(), 1e-4)
    
    # Wrap the model
    model = nn.parallel.DistributedDataParallel(model,
                                                device_ids=[gpu])

    # Data loading code
    train_dataset = xxx    
    #train_sampler 使得每个进程得到不同切分的数据
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset,
        num_replicas=args.world_size,
        rank=rank
    )


    train_loader = torch.utils.data.DataLoader(
        dataset=train_dataset,
       batch_size=batch_size,
       shuffle=False,
       num_workers=args.num_workers,
       pin_memory=True,
      sampler=train_sampler)
    …



def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-n', '--nodes', default=1,
                        type=int, metavar='N')
    parser.add_argument('-g', '--gpus', default=1, type=int,
                        help='number of gpus per node')
    parser.add_argument('-nr', '--nr', default=0, type=int,
                        help='ranking within the nodes')
    parser.add_argument('--epochs', default=2, type=int, 
                        metavar='N',
                        help='number of total epochs to run’)

    args = parser.parse_args()
    args.world_size = args.gpus * args.nodes                #
    os.environ['MASTER_ADDR'] = ‘xx.xx.xx.xx'              #
    os.environ['MASTER_PORT'] = ‘xxxx'                      #
    mp.spawn(train, nprocs=args.gpus, args=(args,))         #

另一种方式使用torch.distributed.launch:

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(‘—-local_rank’, type=int, default=0)

    dist.init_process_group(backend='nccl')                                                          
    
    world_size = torch.distributed.get_world_size()
    torch.manual_seed(0)
    model = model()
    torch.cuda.set_device(args.local_rank)
    device = torch.device("cuda", args.local_rank)
    model.cuda(args.local_rank)
    batch_size = 100
    criterion = nn.CrossEntropyLoss().cuda(gpu)
    optimizer = torch.optim.SGD(model.parameters(), 1e-4)
    
    # Wrap the model
    model = nn.parallel.DistributedDataParallel(model,
                                              device_ids[args.local_rank])

    # Data loading code
    train_dataset = xxx    
    #train_sampler 使得每个进程得到不同切分的数据
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset,
        num_replicas=world_size,
        rank=rank
    )


    train_loader = torch.utils.data.DataLoader(
        dataset=train_dataset,
       batch_size=batch_size,
       shuffle=False,
       num_workers=args.num_workers,
       pin_memory=True,
      sampler=train_sampler)


# python -m torch.distributed.launch --nproc_per_node=2 main.py

参考: https://yangkky.github.io/2019/07/08/distributed-pytorch-tutorial.html


版权声明:本文为cuifan0814原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。