图像复原中什么是数据保真项?什么是先验项?

在机器学习里,经常会看到两个词,data fidelity term, regularization(prior) term.

例如,在image restoration中,我们需要最小化如下的object function(MAP, 最大后验概率),则:

\widehat{x}=arg \, \underset{x}{min}\frac{1}{2}\, \left \| y-Hx \right \|\, +\, \lambda \Phi (x)

data fidelity term: \frac{1}{2}\left \| y-Hx \right \|

regularization(prior) term:\lambda \Phi (x)

那么两项的作用是什么呢?

The fidelity term guarantees the solution accords with the degradation process,

翻译:数据保真项保证结果符合降质过程

while the regularization term enforces desired property of the output.

翻译:正则(先验)项对输出进行增强

Since IR is an ill-posed inverse problem, the prior which is also called regularization needs to be adopted to constraint the solution space

翻译:因为image restoration是病态解问题,所以用正则(先验)项限制解空间


版权声明:本文为seasermy原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。