图像分类

更新

① Efficientnet_b8已经推出

python
>>import timm
>>model=timm.create_model('tf_efficientnet_b8',pretrained=False)
>>model

图像分类模型

[ResNext] ?

? [Aggregated Residual Transformations for Deep Neural Networks]
? [ResNext官方代码链接]

[Efficientnet]

? [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]
? [EfficientNet官方代码链接]

基于PyTorch的图像分类模型

? [代码链接—pytorch-image-models]
? Python库—timm

timm的使用方法

安装timm包

pip install timm

测试

python
>>import timm
>>model=timm.create_model('resnet18',pretrained=False)
>>model
timm支持的模型列表

以下表格中是目前timm所支持的模型结构,可运行model=timm.create_model('模型名称')加载模型。

分类网络系列
ig_resnext101_32x48d
tf_efficientnet_b8
tf_efficientnet_b8_ap
tf_efficientnet_b7_ap
ig_resnext101_32x32d
tf_efficientnet_b7
tf_efficientnet_b6_ap
swsl_resnext101_32x8d
tf_efficientnet_b5_ap
ig_resnext101_32x16d
tf_efficientnet_b6
tf_efficientnet_b5
swsl_resnext101_32x16d
tf_efficientnet_b4_ap
swsl_resnext101_32x4d
tf_efficientnet_b4
pnasnet5large
ig_resnext101_32x8d
nasnetalarge
swsl_resnext50_32x4d
efficientnet_b3a
ssl_resnext101_32x16d
tf_efficientnet_b3_ap
tf_efficientnet_b3
ssl_resnext101_32x8d
efficientnet_b3
senet154
gluon_senet154
swsl_resnet50
gluon_resnet152_v1s
ssl_resnext101_32x4d
gluon_seresnext101_32x4d
gluon_seresnext101_64x4d
efficientnet_b2a
gluon_resnext101_64x4d
mixnet_xl
gluon_resnet152_v1d
inception_resnet_v2
tf_efficientnet_el
gluon_resnet101_v1d
efficientnet_b2
gluon_resnext101_32x4d
ssl_resnext50_32x4d
gluon_resnet101_v1s
tf_efficientnet_b2_ap
seresnext101_32x4d
inception_v4
dpn107
tf_efficientnet_b2
dpn92
ens_adv_inception_resnet_v2
gluon_seresnext50_32x4d
gluon_resnet152_v1c
dpn131
gluon_resnet152_v1b
resnext50d_32x4d
dpn98
gluon_xception65
gluon_resnet101_v1c
hrnet_w64
dla102x2
gluon_resnext50_32x4d
resnext101_32x8d
tf_efficientnet_cc_b1_8e
gluon_resnet101_v1b
hrnet_w48
tf_efficientnet_b1_ap
ssl_resnet50
res2net50_26w_8s
res2net101_26w_4s
seresnext50_32x4d
gluon_resnet50_v1d
xception
resnet50
mixnet_l
hrnet_w40
hrnet_w44
wide_resnet101_2
tf_efficientnet_b1
tf_mixnet_l
gluon_resnet50_v1s
tf_efficientnet_em
efficientnet_b1
dla169
seresnet152
res2net50_26w_6s
resnext50_32x4d
dla102x
wide_resnet50_2
dla60_res2net
hrnet_w32
dla60_res2next
selecsls60b
seresnet101
resnet152
dla60x
res2next50
hrnet_w30
res2net50_14w_8s
dla102
gluon_resnet50_v1c
seresnext26t_32x4d
seresnext26tn_32x4d
selecsls60
res2net50_26w_4s
tf_efficientnet_cc_b0_8e
efficientnet_b0
seresnet50
tv_resnext50_32x4d
seresnext26d_32x4d
gluon_resnet50_v1b
res2net50_48w_2s
dpn68b
resnet101
densenet161
tf_efficientnet_cc_b0_4e
densenet201
mixnet_m
tf_efficientnet_es
selecsls42b
seresnext26_32x4d
tf_efficientnet_b0_ap
dla60
tf_mixnet_m
tf_efficientnet_b0
hrnet_w18
resnet26d
dpn68
tv_resnet50
mixnet_s
densenet169
tf_mixnet_s
mobilenetv3_rw
tf_mobilenetv3_large_100
semnasnet_100
resnet26
fbnetc_100
hrnet_w18_small_v2
resnet34
seresnet34
densenet121
mnasnet_100
dla34
gluon_resnet34_v1b
spnasnet_100
tf_mobilenetv3_large_075
tv_resnet34
swsl_resnet18
ssl_resnet18
hrnet_w18_small
tf_mobilenetv3_large_minimal_100
seresnet18
gluon_resnet18_v1b
resnet18
tf_mobilenetv3_small_100
dla60x_c
dla46x_c
tf_mobilenetv3_small_075
dla46_c
tf_mobilenetv3_small_minimal_100
tf_mixnet_l
timm模型的训练结果

以下表格是timm官方公布的测试结果,我截取前30名在此展示,想要查看完整榜单请访问[results-imagenet.csv]

modeltop1top1_errtop5top5_errparam_countimg_sizecropt_pctinterpolation
ig_resnext101_32x48d85.42814.57297.5722.428828.412240.875bilinear
tf_efficientnet_b885.3714.6397.392.6187.416720.954bicubic
tf_efficientnet_b8_ap85.3714.6397.2942.70687.416720.954bicubic
tf_efficientnet_b7_ap85.1214.8897.2522.74866.356000.949bicubic
ig_resnext101_32x32d85.09414.90697.4382.562468.532240.875bilinear
tf_efficientnet_b784.93615.06497.2042.79666.356000.949bicubic
tf_efficientnet_b6_ap84.78815.21297.1382.86243.045280.942bicubic
swsl_resnext101_32x8d84.28415.71697.1762.82488.792240.875bilinear
tf_efficientnet_b5_ap84.25215.74896.9743.02630.394560.934bicubic
ig_resnext101_32x16d84.1715.8397.1962.804194.032240.875bilinear
tf_efficientnet_b684.1115.8996.8863.11443.045280.942bicubic
tf_efficientnet_b583.81216.18896.7483.25230.394560.934bicubic
swsl_resnext101_32x16d83.34616.65496.8463.154194.032240.875bilinear
tf_efficientnet_b4_ap83.24816.75296.3923.60819.343800.922bicubic
swsl_resnext101_32x4d83.2316.7796.763.2444.182240.875bilinear
tf_efficientnet_b483.02216.97896.33.719.343800.922bicubic
pnasnet5large82.73617.26496.0463.95486.063310.875bicubic
ig_resnext101_32x8d82.68817.31296.6363.36488.792240.875bilinear
nasnetalarge82.55417.44696.0383.96288.753310.875bicubic
swsl_resnext50_32x4d82.18217.81896.233.7725.032240.875bilinear
efficientnet_b3a81.86618.13495.8364.16412.233201bicubic
ssl_resnext101_32x16d81.84418.15696.0963.904194.032240.875bilinear
tf_efficientnet_b3_ap81.82218.17895.6244.37612.233000.904bicubic
tf_efficientnet_b381.63618.36495.7184.28212.233000.904bicubic
ssl_resnext101_32x8d81.61618.38496.0383.96288.792240.875bilinear
efficientnet_b381.49418.50695.7164.28412.233000.904bicubic
senet15481.3118.6995.4964.504115.092240.875bilinear
gluon_senet15481.23418.76695.3484.652115.092240.875bicubic
swsl_resnet5081.16618.83495.9724.02825.562240.875bilinear

另外

图像分类大赛

[“华为云杯”图像分类大赛]


版权声明:本文为qq_36449741原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。