可以解决面试中绝大多数的二叉树问题尤其是树型dp问题,本质是利用递归遍历二叉树的便利性

文章目录
给定一棵二叉树的头节点head,返回这颗二叉树是不是平衡二叉树
public class IsBalanced {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static boolean isBalanced(Node head) {
return process(head).isBalanced;
}
public static class Info{
public boolean isBalanced;
public int height;
public Info(boolean i, int h) {
isBalanced = i;
height = h;
}
}
public static Info process(Node x) {
if(x == null) {
return new Info(true, 0);
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
boolean isBalanced = true;
if(!leftInfo.isBalanced) {
isBalanced = false;
}
if(!rightInfo.isBalanced) {
isBalanced = false;
}
if(Math.abs(leftInfo.height - rightInfo.height) > 1) {
isBalanced = false;
}
return new Info(isBalanced, height);
}
}
给定一棵二叉树的头节点head,任何两个节点之间都存在距离,返回整棵二叉树的最大距离
public class MaxDistance {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static int maxDistance(Node head) {
return process(head).maxDistance;
}
public static class Info {
public int maxDistance;
public int height;
public Info(int dis, int h) {
maxDistance = dis;
height = h;
}
}
public static Info process(Node X) {
if (X == null) {
return new Info(0, 0);
}
Info leftInfo = process(X.left);
Info rightInfo = process(X.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
int maxDistance = Math.max(
Math.max(leftInfo.maxDistance, rightInfo.maxDistance),
leftInfo.height + rightInfo.height + 1);
return new Info(maxDistance, height);
}
}
(*)给定一棵二叉树的头节点head,返回这颗二叉树中最大的二叉搜索子树的头节点
// 在线测试链接 : https://leetcode.com/problems/largest-bst-subtree
public class MaxSubBSTSize {
// 提交时不要提交这个类
public static class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int value) {
val = value;
}
}
// 提交如下的代码,可以直接通过
public static int largestBSTSubtree(TreeNode head) {
if (head == null) {
return 0;
}
return process(head).maxBSTSubtreeSize;
}
public static class Info {
public int maxBSTSubtreeSize;
public int allSize;
public int max;
public int min;
public Info(int m, int a, int ma, int mi) {
maxBSTSubtreeSize = m;
allSize = a;
max = ma;
min = mi;
}
}
public static Info process(TreeNode x) {
if (x == null) {
return null;
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int max = x.val;
int min = x.val;
int allSize = 1;
if (leftInfo != null) {
max = Math.max(leftInfo.max, max);
min = Math.min(leftInfo.min, min);
allSize += leftInfo.allSize;
}
if (rightInfo != null) {
max = Math.max(rightInfo.max, max);
min = Math.min(rightInfo.min, min);
allSize += rightInfo.allSize;
}
int p1 = -1;
if (leftInfo != null) {
p1 = leftInfo.maxBSTSubtreeSize;
}
int p2 = -1;
if (rightInfo != null) {
p2 = rightInfo.maxBSTSubtreeSize;
}
int p3 = -1;
boolean leftBST = leftInfo == null ? true : (leftInfo.maxBSTSubtreeSize == leftInfo.allSize);
boolean rightBST = rightInfo == null ? true : (rightInfo.maxBSTSubtreeSize == rightInfo.allSize);
if (leftBST && rightBST) {
boolean leftMaxLessX = leftInfo == null ? true : (leftInfo.max < x.val);
boolean rightMinMoreX = rightInfo == null ? true : (x.val < rightInfo.min);
if (leftMaxLessX && rightMinMoreX) {
int leftSize = leftInfo == null ? 0 : leftInfo.allSize;
int rightSize = rightInfo == null ? 0 : rightInfo.allSize;
p3 = leftSize + rightSize + 1;
}
}
return new Info(Math.max(p1, Math.max(p2, p3)), allSize, max, min);
}
}
版权声明:本文为qq_53609683原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。