K最近邻(k-Nearest Neighbor,KNN),是一种常用于分类的算法,是有成熟理论支撑的、较为简单的经典机器学习算法之一。该方法的基本思路是:如果一个待分类样本在特征空间中的k个最相似(即特征空间中K近邻)的样本中的大多数属于某一个类别,则该样本也属于这个类别,即近朱者赤,近墨者黑。显然,对当前待分类样本的分类,需要大量已知分类的样本的支持,因此KNN是一种有监督学习算法。
k-最近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。
一、基于实例的学习
- 已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。
从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。 - 基于实例的方法可以为不同的待分类查询实例建立不同的目标函数逼近。事实上,很多技术只建立目标函数的局部逼近,将其应用于与新查询实例邻近的实例,而从不建立在整个实例空间上都表现良好的逼近。当目标函数很复杂,但它可用不太复杂的局部逼近描述时,这样做有显著的优势。
- 基于实例方法的不足
- 分类新实例的开
版权声明:本文为qq_20412595原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。