一、数据探索
首先对每个属性进行了描述性以及相关性探索,如下:
import numpy as np
import pandas as pd
inputfile = '../data/data.csv' # 输入的数据文件
data = pd.read_csv(inputfile) # 读取数据
# 描述性统计分析
description = [data.min(), data.max(), data.mean(), data.std()] # 依次计算最小值、最大值、均值、标准差
description = pd.DataFrame(description, index = ['Min', 'Max', 'Mean', 'STD']).T # 将结果存入数据框
print('描述性统计结果:\n',np.round(description, 2)) # 保留两位小数
# 相关性分析
corr = data.corr(method = 'pearson') # 计算相关系数矩阵
print('相关系数矩阵为:\n',np.round(corr, 2)) # 保留两位小数
由图可见x11与y线性关系不显著,呈负相关,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x12,x13呈现高度正相关,按相关性大小排序为:x3,x4,x5,x7,x8,x10,x13,x2,x9,x1,x6,x12,同时可以看出各属性除了与x11之外都存在严重的多重共线性,需要对属性进一步筛选,相关性热力图如下:
二、数据预处理
使用Lasso回归方法进行关键属性选取,如下:
因此选择关键属性为x1,x3,x4,x5,x6,x7 ,x8,x13
模型建立
1、灰色预测
import sys
sys.path.append('../code') # 设置路径
import numpy as np
import pandas as pd
from GM11 import GM11 # 引入自编的灰色预测函数
inputfile1 = '../tmp/new_reg_data.csv' # 输入的数据文件
inputfile2 = '../data/data.csv' # 输入的数据文件
new_reg_data = pd.read_csv(inputfile1) # 读取经过特征选择后的数据
data = pd.read_csv(inputfile2) # 读取总的数据
new_reg_data.index = range(1994, 2014)
new_reg_data.loc[2014] = None
new_reg_data.loc[2015] = None
l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
for i in l:
f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0]
new_reg_data.loc[2014,i] = f(len(new_reg_data)-1) # 2014年预测结果
new_reg_data.loc[2015,i] = f(len(new_reg_data)) # 2015年预测结果
new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数
outputfile = '../tmp/new_reg_data_GM11.xls' # 灰色预测后保存的路径
y = list(data['y'].values) # 提取财政收入列,合并至新数据框中
y.extend([np.nan,np.nan])
new_reg_data['y'] = y
new_reg_data.to_excel(outputfile) # 结果输出
print('预测结果为:\n',new_reg_data.loc[2014:2015,:]) # 预测结果展示
2、SVR算法预测
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 22 11:14:03 2022
@author: 86152
"""
# 代码6-6
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVR
inputfile = '../tmp/new_reg_data_GM11.xls' # 灰色预测后保存的路径
data = pd.read_excel(inputfile) # 读取数据
feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列
data_train = data.loc[range(1994,2014)].copy() # 取2014年前的数据建模
data_mean = data_train.mean()
data_std = data_train.std()
data_train = (data_train - data_mean)/data_std # 数据标准化
x_train = data_train[feature].as_matrix() # 属性数据
y_train = data_train['y'].as_matrix() # 标签数据
linearsvr = LinearSVR() # 调用LinearSVR()函数
linearsvr.fit(x_train,y_train)
x = ((data[feature] - data_mean[feature])/data_std[feature]).as_matrix() # 预测,并还原结果。
data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
outputfile = '../tmp/new_reg_data_GM11_revenue.xls' # SVR预测后保存的结果
data.to_excel(outputfile)
print('真实值与预测值分别为:\n',data[['y','y_pred']])
fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图
plt.show()
版权声明:本文为weixin_47540665原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。