文本分类实战—— Bi-LSTM + Attention模型

1 大纲概述

文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:

word2vec预训练词向量

textCNN 模型

charCNN 模型

Bi-LSTM 模型

Bi-LSTM + Attention 模型

RCNN 模型

Adversarial LSTM 模型

Transformer 模型

ELMo 预训练模型

BERT 预训练模型

jupyter notebook代码均在textClassifier仓库中,python代码在NLP-Project中的text_classfier中。

 

2 数据集

数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),数据预处理如文本分类实战(一)—— word2vec预训练词向量中一样,预处理后的文件为/data/preprocess/labeledTrain.csv。

 

3 Bi-LSTM + Attention 模型

Bi-LSTM + Attention模型来源于论文Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification。关于Attention的介绍见这篇

Bi-LSTM + Attention 就是在Bi-LSTM的模型上加入Attention层,在Bi-LSTM中我们会用最后一个时序的输出向量 作为特征向量,然后进行softmax分类。Attention是先计算每个时序的权重,然后将所有时序 的向量进行加权和作为特征向量,然后进行softmax分类。在实验中,加上Attention确实对结果有所提升。其模型结构如下图:

 

4 参数配置

复制代码

import os
import csv
import time
import datetime
import random
import json

import warnings
from collections import Counter
from math import sqrt

import gensim
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
warnings.filterwarnings("ignore")

复制代码

 

复制代码

# 配置参数

class TrainingConfig(object):
    epoches = 4
    evaluateEvery = 100
    checkpointEvery = 100
    learningRate = 0.001
    
class ModelConfig(object):
    embeddingSize = 200
    
    hiddenSizes = [256, 128]  # LSTM结构的神经元个数
    
    dropoutKeepProb = 0.5
    l2RegLambda = 0.0
    
class Config(object):
    sequenceLength = 200  # 取了所有序列长度的均值
    batchSize = 128
    
    dataSource = "../data/preProcess/labeledTrain.csv"
    
    stopWordSource = "../data/english"
    
    numClasses = 1  # 二分类设置为1,多分类设置为类别的数目
    
    rate = 0.8  # 训练集的比例
    
    training = TrainingConfig()
    
    model = ModelConfig()

    
# 实例化配置参数对象
config = Config()

复制代码

 

5 生成训练数据

1)将数据加载进来,将句子分割成词表示,并去除低频词和停用词。

2)将词映射成索引表示,构建词汇-索引映射表,并保存成json的数据格式,之后做inference时可以用到。(注意,有的词可能不在word2vec的预训练词向量中,这种词直接用UNK表示)

3)从预训练的词向量模型中读取出词向量,作为初始化值输入到模型中。

4)将数据集分割成训练集和测试集

复制代码

# 数据预处理的类,生成训练集和测试集

class Dataset(object):
    def __init__(self, config):
        self.config = config
        self._dataSource = config.dataSource
        self._stopWordSource = config.stopWordSource  
        
        self._sequenceLength = config.sequenceLength  # 每条输入的序列处理为定长
        self._embeddingSize = config.model.embeddingSize
        self._batchSize = config.batchSize
        self._rate = config.rate
        
        self._stopWordDict = {}
        
        self.trainReviews = []
        self.trainLabels = []
        
        self.evalReviews = []
        self.evalLabels = []
        
        self.wordEmbedding =None
        
        self.labelList = []
        
    def _readData(self, filePath):
        """
        从csv文件中读取数据集
        """
        
        df = pd.read_csv(filePath)
        
        if self.config.numClasses == 1:
            labels = df["sentiment"].tolist()
        elif self.config.numClasses > 1:
            labels = df["rate"].tolist()
            
        review = df["review"].tolist()
        reviews = [line.strip().split() for line in review]

        return reviews, labels
    
    def _labelToIndex(self, labels, label2idx):
        """
        将标签转换成索引表示
        """
        labelIds = [label2idx[label] for label in labels]
        return labelIds
    
    def _wordToIndex(self, reviews, word2idx):
        """
        将词转换成索引
        """
        reviewIds = [[word2idx.get(item, word2idx["UNK"]) for item in review] for review in reviews]
        return reviewIds
        
    def _genTrainEvalData(self, x, y, word2idx, rate):
        """
        生成训练集和验证集
        """
        reviews = []
        for review in x:
            if len(review) >= self._sequenceLength:
                reviews.append(review[:self._sequenceLength])
            else:
                reviews.append(review + [word2idx["PAD"]] * (self._sequenceLength - len(review)))
            
        trainIndex = int(len(x) * rate)
        
        trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
        trainLabels = np.array(y[:trainIndex], dtype="float32")
        
        evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
        evalLabels = np.array(y[trainIndex:], dtype="float32")

        return trainReviews, trainLabels, evalReviews, evalLabels
        
    def _genVocabulary(self, reviews, labels):
        """
        生成词向量和词汇-索引映射字典,可以用全数据集
        """
        
        allWords = [word for review in reviews for word in review]
        
        # 去掉停用词
        subWords = [word for word in allWords if word not in self.stopWordDict]
        
        wordCount = Counter(subWords)  # 统计词频
        sortWordCount = sorted(wordCount.items(), key=lambda x: x[1], reverse=True)
        
        # 去除低频词
        words = [item[0] for item in sortWordCount if item[1] >= 5]
        
        vocab, wordEmbedding = self._getWordEmbedding(words)
        self.wordEmbedding = wordEmbedding
        
        word2idx = dict(zip(vocab, list(range(len(vocab)))))
        
        uniqueLabel = list(set(labels))
        label2idx = dict(zip(uniqueLabel, list(range(len(uniqueLabel)))))
        self.labelList = list(range(len(uniqueLabel)))
        
        # 将词汇-索引映射表保存为json数据,之后做inference时直接加载来处理数据
        with open("../data/wordJson/word2idx.json", "w", encoding="utf-8") as f:
            json.dump(word2idx, f)
        
        with open("../data/wordJson/label2idx.json", "w", encoding="utf-8") as f:
            json.dump(label2idx, f)
        
        return word2idx, label2idx
            
    def _getWordEmbedding(self, words):
        """
        按照我们的数据集中的单词取出预训练好的word2vec中的词向量
        """
        
        wordVec = gensim.models.KeyedVectors.load_word2vec_format("../word2vec/word2Vec.bin", binary=True)
        vocab = []
        wordEmbedding = []
        
        # 添加 "pad" 和 "UNK", 
        vocab.append("PAD")
        vocab.append("UNK")
        wordEmbedding.append(np.zeros(self._embeddingSize))
        wordEmbedding.append(np.random.randn(self._embeddingSize))
        
        for word in words:
            try:
                vector = wordVec.wv[word]
                vocab.append(word)
                wordEmbedding.append(vector)
            except:
                print(word + "不存在于词向量中")
                
        return vocab, np.array(wordEmbedding)
    
    def _readStopWord(self, stopWordPath):
        """
        读取停用词
        """
        
        with open(stopWordPath, "r") as f:
            stopWords = f.read()
            stopWordList = stopWords.splitlines()
            # 将停用词用列表的形式生成,之后查找停用词时会比较快
            self.stopWordDict = dict(zip(stopWordList, list(range(len(stopWordList)))))
            
    def dataGen(self):
        """
        初始化训练集和验证集
        """
        
        # 初始化停用词
        self._readStopWord(self._stopWordSource)
        
        # 初始化数据集
        reviews, labels = self._readData(self._dataSource)
        
        # 初始化词汇-索引映射表和词向量矩阵
        word2idx, label2idx = self._genVocabulary(reviews, labels)
        
        # 将标签和句子数值化
        labelIds = self._labelToIndex(labels, label2idx)
        reviewIds = self._wordToIndex(reviews, word2idx)
        
        # 初始化训练集和测试集
        trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviewIds, labelIds, word2idx, self._rate)
        self.trainReviews = trainReviews
        self.trainLabels = trainLabels
        
        self.evalReviews = evalReviews
        self.evalLabels = evalLabels
        
        
data = Dataset(config)
data.dataGen()

复制代码

 

6 生成batch数据集

采用生成器的形式向模型输入batch数据集,(生成器可以避免将所有的数据加入到内存中)

复制代码

# 输出batch数据集

def nextBatch(x, y, batchSize):
        """
        生成batch数据集,用生成器的方式输出
        """
    
        perm = np.arange(len(x))
        np.random.shuffle(perm)
        x = x[perm]
        y = y[perm]
        
        numBatches = len(x) // batchSize

        for i in range(numBatches):
            start = i * batchSize
            end = start + batchSize
            batchX = np.array(x[start: end], dtype="int64")
            batchY = np.array(y[start: end], dtype="float32")
            
            yield batchX, batchY

复制代码

 

7 Bi-LSTM + Attention模型

 

复制代码

# 构建模型
class BiLSTMAttention(object):
    """
    Text CNN 用于文本分类
    """
    def __init__(self, config, wordEmbedding):

        # 定义模型的输入
        self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
        self.inputY = tf.placeholder(tf.int32, [None], name="inputY")
        
        self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
        
        # 定义l2损失
        l2Loss = tf.constant(0.0)
        
        # 词嵌入层
        with tf.name_scope("embedding"):

            # 利用预训练的词向量初始化词嵌入矩阵
            self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec") ,name="W")
            # 利用词嵌入矩阵将输入的数据中的词转换成词向量,维度[batch_size, sequence_length, embedding_size]
            self.embeddedWords = tf.nn.embedding_lookup(self.W, self.inputX)
            
        # 定义两层双向LSTM的模型结构
        with tf.name_scope("Bi-LSTM"):
            for idx, hiddenSize in enumerate(config.model.hiddenSizes):
                with tf.name_scope("Bi-LSTM" + str(idx)):
                    # 定义前向LSTM结构
                    lstmFwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
                                                                 output_keep_prob=self.dropoutKeepProb)
                    # 定义反向LSTM结构
                    lstmBwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
                                                                 output_keep_prob=self.dropoutKeepProb)


                    # 采用动态rnn,可以动态的输入序列的长度,若没有输入,则取序列的全长
                    # outputs是一个元祖(output_fw, output_bw),其中两个元素的维度都是[batch_size, max_time, hidden_size],fw和bw的hidden_size一样
                    # self.current_state 是最终的状态,二元组(state_fw, state_bw),state_fw=[batch_size, s],s是一个元祖(h, c)
                    outputs_, self.current_state = tf.nn.bidirectional_dynamic_rnn(lstmFwCell, lstmBwCell, 
                                                                                  self.embeddedWords, dtype=tf.float32,
                                                                                  scope="bi-lstm" + str(idx))
        
                    # 对outputs中的fw和bw的结果拼接 [batch_size, time_step, hidden_size * 2], 传入到下一层Bi-LSTM中
                    self.embeddedWords = tf.concat(outputs_, 2)
                
        # 将最后一层Bi-LSTM输出的结果分割成前向和后向的输出
        outputs = tf.split(self.embeddedWords, 2, -1)
        
        # 在Bi-LSTM+Attention的论文中,将前向和后向的输出相加
        with tf.name_scope("Attention"):
            H = outputs[0] + outputs[1]

            # 得到Attention的输出
            output = self.attention(H)
            outputSize = config.model.hiddenSizes[-1]
        
        # 全连接层的输出
        with tf.name_scope("output"):
            outputW = tf.get_variable(
                "outputW",
                shape=[outputSize, config.numClasses],
                initializer=tf.contrib.layers.xavier_initializer())
            
            outputB= tf.Variable(tf.constant(0.1, shape=[config.numClasses]), name="outputB")
            l2Loss += tf.nn.l2_loss(outputW)
            l2Loss += tf.nn.l2_loss(outputB)
            self.logits = tf.nn.xw_plus_b(output, outputW, outputB, name="logits")
            
            if config.numClasses == 1:
                self.predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.float32, name="predictions")
            elif config.numClasses > 1:
                self.predictions = tf.argmax(self.logits, axis=-1, name="predictions")
        
        # 计算二元交叉熵损失
        with tf.name_scope("loss"):
            
            if config.numClasses == 1:
                losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.cast(tf.reshape(self.inputY, [-1, 1]), 
                                                                                                    dtype=tf.float32))
            elif config.numClasses > 1:
                losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.inputY)
                
            self.loss = tf.reduce_mean(losses) + config.model.l2RegLambda * l2Loss
    
    def attention(self, H):
        """
        利用Attention机制得到句子的向量表示
        """
        # 获得最后一层LSTM的神经元数量
        hiddenSize = config.model.hiddenSizes[-1]
        
        # 初始化一个权重向量,是可训练的参数
        W = tf.Variable(tf.random_normal([hiddenSize], stddev=0.1))
        
        # 对Bi-LSTM的输出用激活函数做非线性转换
        M = tf.tanh(H)
        
        # 对W和M做矩阵运算,W=[batch_size, time_step, hidden_size],计算前做维度转换成[batch_size * time_step, hidden_size]
        # newM = [batch_size, time_step, 1],每一个时间步的输出由向量转换成一个数字
        newM = tf.matmul(tf.reshape(M, [-1, hiddenSize]), tf.reshape(W, [-1, 1]))
        
        # 对newM做维度转换成[batch_size, time_step]
        restoreM = tf.reshape(newM, [-1, config.sequenceLength])
        
        # 用softmax做归一化处理[batch_size, time_step]
        self.alpha = tf.nn.softmax(restoreM)
        
        # 利用求得的alpha的值对H进行加权求和,用矩阵运算直接操作
        r = tf.matmul(tf.transpose(H, [0, 2, 1]), tf.reshape(self.alpha, [-1, config.sequenceLength, 1]))
        
        # 将三维压缩成二维sequeezeR=[batch_size, hidden_size]
        sequeezeR = tf.reshape(r, [-1, hiddenSize])
        
        sentenceRepren = tf.tanh(sequeezeR)
        
        # 对Attention的输出可以做dropout处理
        output = tf.nn.dropout(sentenceRepren, self.dropoutKeepProb)
        
        return output

复制代码

 

8 定义计算metrics的函数

 

复制代码

"""
定义各类性能指标
"""

def mean(item: list) -> float:
    """
    计算列表中元素的平均值
    :param item: 列表对象
    :return:
    """
    res = sum(item) / len(item) if len(item) > 0 else 0
    return res


def accuracy(pred_y, true_y):
    """
    计算二类和多类的准确率
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]
    corr = 0
    for i in range(len(pred_y)):
        if pred_y[i] == true_y[i]:
            corr += 1
    acc = corr / len(pred_y) if len(pred_y) > 0 else 0
    return acc


def binary_precision(pred_y, true_y, positive=1):
    """
    二类的精确率计算
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param positive: 正例的索引表示
    :return:
    """
    corr = 0
    pred_corr = 0
    for i in range(len(pred_y)):
        if pred_y[i] == positive:
            pred_corr += 1
            if pred_y[i] == true_y[i]:
                corr += 1

    prec = corr / pred_corr if pred_corr > 0 else 0
    return prec


def binary_recall(pred_y, true_y, positive=1):
    """
    二类的召回率
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param positive: 正例的索引表示
    :return:
    """
    corr = 0
    true_corr = 0
    for i in range(len(pred_y)):
        if true_y[i] == positive:
            true_corr += 1
            if pred_y[i] == true_y[i]:
                corr += 1

    rec = corr / true_corr if true_corr > 0 else 0
    return rec


def binary_f_beta(pred_y, true_y, beta=1.0, positive=1):
    """
    二类的f beta值
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param beta: beta值
    :param positive: 正例的索引表示
    :return:
    """
    precision = binary_precision(pred_y, true_y, positive)
    recall = binary_recall(pred_y, true_y, positive)
    try:
        f_b = (1 + beta * beta) * precision * recall / (beta * beta * precision + recall)
    except:
        f_b = 0
    return f_b


def multi_precision(pred_y, true_y, labels):
    """
    多类的精确率
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param labels: 标签列表
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    precisions = [binary_precision(pred_y, true_y, label) for label in labels]
    prec = mean(precisions)
    return prec


def multi_recall(pred_y, true_y, labels):
    """
    多类的召回率
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param labels: 标签列表
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    recalls = [binary_recall(pred_y, true_y, label) for label in labels]
    rec = mean(recalls)
    return rec


def multi_f_beta(pred_y, true_y, labels, beta=1.0):
    """
    多类的f beta值
    :param pred_y: 预测结果
    :param true_y: 真实结果
    :param labels: 标签列表
    :param beta: beta值
    :return:
    """
    if isinstance(pred_y[0], list):
        pred_y = [item[0] for item in pred_y]

    f_betas = [binary_f_beta(pred_y, true_y, beta, label) for label in labels]
    f_beta = mean(f_betas)
    return f_beta


def get_binary_metrics(pred_y, true_y, f_beta=1.0):
    """
    得到二分类的性能指标
    :param pred_y:
    :param true_y:
    :param f_beta:
    :return:
    """
    acc = accuracy(pred_y, true_y)
    recall = binary_recall(pred_y, true_y)
    precision = binary_precision(pred_y, true_y)
    f_beta = binary_f_beta(pred_y, true_y, f_beta)
    return acc, recall, precision, f_beta


def get_multi_metrics(pred_y, true_y, labels, f_beta=1.0):
    """
    得到多分类的性能指标
    :param pred_y:
    :param true_y:
    :param labels:
    :param f_beta:
    :return:
    """
    acc = accuracy(pred_y, true_y)
    recall = multi_recall(pred_y, true_y, labels)
    precision = multi_precision(pred_y, true_y, labels)
    f_beta = multi_f_beta(pred_y, true_y, labels, f_beta)
    return acc, recall, precision, f_beta

复制代码

 

 

9 训练模型

在训练时,我们定义了tensorBoard的输出,并定义了两种模型保存的方法。

复制代码

# 训练模型

# 生成训练集和验证集
trainReviews = data.trainReviews
trainLabels = data.trainLabels
evalReviews = data.evalReviews
evalLabels = data.evalLabels

wordEmbedding = data.wordEmbedding
labelList = data.labelList

# 定义计算图
with tf.Graph().as_default():

    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
    session_conf.gpu_options.allow_growth=True
    session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9  # 配置gpu占用率  

    sess = tf.Session(config=session_conf)
    
    # 定义会话
    with sess.as_default():
        lstm = BiLSTMAttention(config, wordEmbedding)
        
        globalStep = tf.Variable(0, name="globalStep", trainable=False)
        # 定义优化函数,传入学习速率参数
        optimizer = tf.train.AdamOptimizer(config.training.learningRate)
        # 计算梯度,得到梯度和变量
        gradsAndVars = optimizer.compute_gradients(lstm.loss)
        # 将梯度应用到变量下,生成训练器
        trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep)
        
        # 用summary绘制tensorBoard
        gradSummaries = []
        for g, v in gradsAndVars:
            if g is not None:
                tf.summary.histogram("{}/grad/hist".format(v.name), g)
                tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
        
        outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
        print("Writing to {}\n".format(outDir))
        
        lossSummary = tf.summary.scalar("loss", lstm.loss)
        summaryOp = tf.summary.merge_all()
        
        trainSummaryDir = os.path.join(outDir, "train")
        trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph)
        
        evalSummaryDir = os.path.join(outDir, "eval")
        evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph)
        
        
        # 初始化所有变量
        saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
        
        # 保存模型的一种方式,保存为pb文件
        savedModelPath = "../model/bilstm-atten/savedModel"
        if os.path.exists(savedModelPath):
            os.rmdir(savedModelPath)
        builder = tf.saved_model.builder.SavedModelBuilder(savedModelPath)
            
        sess.run(tf.global_variables_initializer())

        def trainStep(batchX, batchY):
            """
            训练函数
            """   
            feed_dict = {
              lstm.inputX: batchX,
              lstm.inputY: batchY,
              lstm.dropoutKeepProb: config.model.dropoutKeepProb
            }
            _, summary, step, loss, predictions = sess.run(
                [trainOp, summaryOp, globalStep, lstm.loss, lstm.predictions],
                feed_dict)
            timeStr = datetime.datetime.now().isoformat()
            
            if config.numClasses == 1:
                acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)

                
            elif config.numClasses > 1:
                acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
                                                              labels=labelList)
                
            trainSummaryWriter.add_summary(summary, step)
            
            return loss, acc, prec, recall, f_beta

        def devStep(batchX, batchY):
            """
            验证函数
            """
            feed_dict = {
              lstm.inputX: batchX,
              lstm.inputY: batchY,
              lstm.dropoutKeepProb: 1.0
            }
            summary, step, loss, predictions = sess.run(
                [summaryOp, globalStep, lstm.loss, lstm.predictions],
                feed_dict)
            
            if config.numClasses == 1:
            
                acc, precision, recall, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
            elif config.numClasses > 1:
                acc, precision, recall, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY, labels=labelList)
            
            evalSummaryWriter.add_summary(summary, step)
            
            return loss, acc, precision, recall, f_beta
        
        for i in range(config.training.epoches):
            # 训练模型
            print("start training model")
            for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
                loss, acc, prec, recall, f_beta = trainStep(batchTrain[0], batchTrain[1])
                
                currentStep = tf.train.global_step(sess, globalStep) 
                print("train: step: {}, loss: {}, acc: {}, recall: {}, precision: {}, f_beta: {}".format(
                    currentStep, loss, acc, recall, prec, f_beta))
                if currentStep % config.training.evaluateEvery == 0:
                    print("\nEvaluation:")
                    
                    losses = []
                    accs = []
                    f_betas = []
                    precisions = []
                    recalls = []
                    
                    for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
                        loss, acc, precision, recall, f_beta = devStep(batchEval[0], batchEval[1])
                        losses.append(loss)
                        accs.append(acc)
                        f_betas.append(f_beta)
                        precisions.append(precision)
                        recalls.append(recall)
                        
                    time_str = datetime.datetime.now().isoformat()
                    print("{}, step: {}, loss: {}, acc: {},precision: {}, recall: {}, f_beta: {}".format(time_str, currentStep, mean(losses), 
                                                                                                       mean(accs), mean(precisions),
                                                                                                       mean(recalls), mean(f_betas)))
                    
                if currentStep % config.training.checkpointEvery == 0:
                    # 保存模型的另一种方法,保存checkpoint文件
                    path = saver.save(sess, "../model/Bi-LSTM-atten/model/my-model", global_step=currentStep)
                    print("Saved model checkpoint to {}\n".format(path))
                    
        inputs = {"inputX": tf.saved_model.utils.build_tensor_info(lstm.inputX),
                  "keepProb": tf.saved_model.utils.build_tensor_info(lstm.dropoutKeepProb)}

        outputs = {"predictions": tf.saved_model.utils.build_tensor_info(lstm.binaryPreds)}

        prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
                                                                                      method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
        legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
        builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
                                            signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op)

        builder.save()

复制代码

 

10 预测代码

复制代码

x = "this movie is full of references like mad max ii the wild one and many others the ladybug´s face it´s a clear reference or tribute to peter lorre this movie is a masterpiece we´ll talk much more about in the future"

# 注:下面两个词典要保证和当前加载的模型对应的词典是一致的
with open("../data/wordJson/word2idx.json", "r", encoding="utf-8") as f:
    word2idx = json.load(f)
        
with open("../data/wordJson/label2idx.json", "r", encoding="utf-8") as f:
    label2idx = json.load(f)
idx2label = {value: key for key, value in label2idx.items()}
    
xIds = [word2idx.get(item, word2idx["UNK"]) for item in x.split(" ")]
if len(xIds) >= config.sequenceLength:
    xIds = xIds[:config.sequenceLength]
else:
    xIds = xIds + [word2idx["PAD"]] * (config.sequenceLength - len(xIds))

graph = tf.Graph()
with graph.as_default():
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
    session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
    sess = tf.Session(config=session_conf)

    with sess.as_default():
        checkpoint_file = tf.train.latest_checkpoint("../model/Bi-LSTM-atten/model/")
        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
        saver.restore(sess, checkpoint_file)

        # 获得需要喂给模型的参数,输出的结果依赖的输入值
        inputX = graph.get_operation_by_name("inputX").outputs[0]
        dropoutKeepProb = graph.get_operation_by_name("dropoutKeepProb").outputs[0]

        # 获得输出的结果
        predictions = graph.get_tensor_by_name("output/predictions:0")

        pred = sess.run(predictions, feed_dict={inputX: [xIds], dropoutKeepProb: 1.0})[0]
        
pred = [idx2label[item] for item in pred]     
print(pred)

复制代码