GC调优与常量池详解

学习了GC日志的详情与常量池为大家分享一下,现在把学习笔记总结记录一下,如果记录有些错误,还望指出。



对于java应用我们可以通过一些配置把程序运行过程中的gc日志全部打印出来,然后分析gc日志得到关键性指标,分析 GC原因,调优JVM参数。


打印GC日志方法

打印GC日志方法,在JVM参数里增加参数,%t 代表时间
‐Xloggc:./gc‐%t.log ‐XX:+PrintGCDetails ‐XX:+PrintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause
‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M

Tomcat则直接加在JAVA_OPTS变量里。

如何分析GC日志

运行程序加上对应gc日志

java ‐jar ‐Xloggc:./gc‐%t.log ‐XX:+PrintGCDetails ‐XX:+PrintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause
‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M microservice‐eureka‐server.jar

下图中是我截取的JVM刚启动的一部分GC日志

在这里插入图片描述
我们可以看到图中第一行红框,是项目的配置参数。这里不仅配置了打印GC日志,还有相关的VM内存参数。
第二行红框中的是在这个GC时间点发生GC之后相关GC情况。

  1. 对于2.909: 这是从jvm启动开始计算到这次GC经过的时间,前面还有具体的发生时间日期。
  2. Full GC(Metadata GC Threshold)指这是一次full gc,括号里是gc的原因, PSYoungGen是年轻代的GC, ParOldGen是老年代的GC,Metaspace是元空间的GC
  3. 6160K->0K(141824K),这三个数字分别对应GC之前占用年轻代的大小,GC之后年轻代占用,以及整个年轻代的大 小。
  4. 112K->6056K(95744K),这三个数字分别对应GC之前占用老年代的大小,GC之后老年代占用,以及整个老年代的 大小。
  5. 6272K->6056K(237568K),这三个数字分别对应GC之前占用堆内存的大小,GC之后堆内存占用,以及整个堆内存 的大小。
  6. 20516K->20516K(1069056K),这三个数字分别对应GC之前占用元空间内存的大小,GC之后元空间内存占用,以 及整个元空间内存的大小。
  7. 0.0209707是该时间点GC总耗费时间

从日志可以发现几次fullgc都是由于元空间不够导致的,所以我们可以将元空间调大点

java ‐jar ‐Xloggc:./gc‐adjust‐%t.log ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+Print GCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M microservice‐eureka‐server.jar

调整完我们再看下gc日志发现已经没有因为元空间不够导致的fullgc了

对于CMS和G1收集器的日志会有一点不一样,也可以试着打印下对应的gc日志分析下,可以发现gc日志里面的gc步骤跟
我们之前讲过的步骤是类似的

package com.jvm;

import java.util.ArrayList;

/**
 * @author finley
 * @version 1.0
 * @description: TODO
 */
public class HeapTest {
    /**
     * // 100KB
     */
    byte[] a = new byte[1024 * 100];

    public static void main(String[] args) throws InterruptedException {
        ArrayList<HeapTest> heapTests = new ArrayList<>();
        while (true) {
            heapTests.add(new HeapTest());
            Thread.sleep(100);
        }
    }
}

CMS

‐Xloggc:d:/gc‐cms‐%t.log ‐Xms50M ‐Xmx50M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+P rintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M ‐XX:+UseParNewGC ‐XX:+UseConcMarkSweepGC

G1

‐Xloggc:d:/gc‐cms‐%t.log ‐Xms50M ‐Xmx50M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐XX:+PrintGCDetails ‐XX:+P rintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M ‐XX:+UseG1GC

上面的这些参数,能够帮我们查看分析GC的垃圾收集情况。但是如果GC日志很多很多,成千上万行。就算你一目十行, 看完了,脑子也是一片空白。所以我们可以借助一些功能来帮助我们分析,这里推荐一个gceasy(https://gceasy.io),可以 上传gc文件,然后他会利用可视化的界面来展现GC情况。具体下图所示
在这里插入图片描述

选择完GC文件滚到可以查询各种分析数据例如
在这里插入图片描述
上图我们可以看到年轻代,老年代,以及永久代的内存分配,和最大使用情况。
在这里插入图片描述
上图我们可以看到堆内存在GC之前和之后的变化,以及其他信息。
这个工具还提供基于机器学习的JVM智能优化建议,当然现在这个功能需要付费(有能力的小伙伴可以产生效果还是很不错的)
在这里插入图片描述

JVM参数汇总查看命令

java -XX:+PrintFlagsInitial 表示打印出所有参数选项的默认值
java -XX:+PrintFlagsFinal 表示打印出所有参数选项在运行程序时生效的值

Class常量池与运行时常量池

Class常量池可以理解为是Class文件中的资源仓库。 Class文件中除了包含类的版本、字段、方法、接口等描述信息外, 还有一项信息就是常量池(constant pool table),用于存放编译期生成的各种字面量(Literal)和符号引用(Symbolic References)。

一个class文件的16进制大体结构如下图:

在这里插入图片描述
对应的含义如下,细节可以查下oracle官方文档
在这里插入图片描述
当然我们一般不会去人工解析这种16进制的字节码文件,我们一般可以通过javap命令生成更可读的JVM字节码指令文 件:

javap -v Math.class
在这里插入图片描述
红框标出的就是class常量池信息,常量池中主要存放两大类常量:字面量和符号引用

字面量

字面量就是指由字母、数字等构成的字符串或者数值常量
字面量只可以右值出现,所谓右值是指等号右边的值,如:int a=1 这里的a为左值,1为右值。在这个例子中1就是字面 量。

int a = 1; 
int b = 2; 
int c = "abcdefg";
int d = "abcdefg";

符号引用

符号引用是编译原理中的概念,是相对于直接引用来说的。主要包括了以下三类常量:

  • 类和接口的全限定名
  • 字段的名称和描述符
  • 方法的名称和描述符
    上面的a,b就是字段名称,就是一种符号引用,还有Math类常量池里的 Lcom/jvm/Math 是类的全限定名, main和compute是方法名称,()是一种UTF8格式的描述符,这些都是符号引用。
    这些常量池现在是静态信息,只有到运行时被加载到内存后,这些符号才有对应的内存地址信息,这些常量池一旦被装 入内存就变成运行时常量池,对应的符号引用在程序加载或运行时会被转变为被加载到内存区域的代码的直接引用,也 就是我们说的动态链接了。例如,compute()这个符号引用在运行时就会被转变为compute()方法具体代码在内存中的 地址,主要通过对象头里的类型指针去转换直接引用。

字符串常量池

字符串常量池的设计思想

  1. 字符串的分配,和其他的对象分配一样,耗费高昂的时间与空间代价,作为最基础的数据类型,大量频繁的创建 字符串,极大程度地影响程序的性能
  2. JVM为了提高性能和减少内存开销,在实例化字符串常量的时候进行了一些优化
    为字符串开辟一个字符串常量池,类似于缓存区
    创建字符串常量时,首先查询字符串常量池是否存在该字符串
    存在该字符串,返回引用实例,不存在,实例化该字符串并放入池中

三种字符串操作(Jdk1.7 及以上版本)

  • 直接赋值字符串

String s = “str”; // s指向常量池中的引用
这种方式创建的字符串对象,只会在常量池中。
因为有"str"这个字面量,创建对象s的时候,JVM会先去常量池中通过 equals(key) 方法,判断是否有相同的对象
如果有,则直接返回该对象在常量池中的引用;
如果没有,则会在常量池中创建一个新对象,再返回引用。

  • new String();

String s1 = new String(“str”); // s1指向内存中的对象引用
这种方式会保证字符串常量池和堆中都有这个对象,没有就创建,最后返回堆内存中的对象引用。 步骤大致如下:
因为有"str"这个字面量,所以会先检查字符串常量池中是否存在字符串"str"
不存在,先在字符串常量池里创建一个字符串对象;再去内存中创建一个字符串对象"str";
存在的话,就直接去堆内存中创建一个字符串对象"str";
最后,将内存中的引用返回。

  • intern方法

String s1 = new String(“str”);
String s2 = s1.intern();
System.out.println(s1 == s2); //false
String中的intern方法是一个 native 的方法,当调用 intern方法时,如果池已经包含一个等于此String对象的字符串 (用equals(oject)方法确定),则返回池中的字符串。否则,将intern返回的引用指向当前字符串 s1(jdk1.6版本需要将 s1 复制到字符串常量池里)

字符串常量池位置

Jdk1.6及之前: 有永久代, 运行时常量池在永久代,运行时常量池包含字符串常量池
Jdk1.7:有永久代,但已经逐步“去永久代”,字符串常量池从永久代里的运行时常量池分离到堆里
Jdk1.8及之后: 无永久代,运行时常量池在元空间,字符串常量池里依然在堆里

用一个程序证明下字符串常量池在哪里:

package com.tuling.jvm;

import java.util.ArrayList;

/**
 *  jdk6:‐Xms6M ‐Xmx6M ‐XX:PermSize=6M ‐XX:MaxPermSize=6M
 *  jdk8:‐Xms6M ‐Xmx6M ‐XX:MetaspaceSize=6M ‐XX:MaxMetaspaceSize=6M 4
 */
public class RuntimeConstantPoolOOM {

    public static void main(String[] args) {
        ArrayList<String> list = new ArrayList<String>();

        for (int i = 0; i < 10000000; i++) {
            String str = String.valueOf(i).intern();
            list.add(str);
        }
    }
}

运行结果:
jdk7及以上:Exception in thread “main” java.lang.OutOfMemoryError: Java heap space
jdk6:Exception in thread “main” java.lang.OutOfMemoryError: PermGen space

字符串常量池设计原理

字符串常量池底层是hotspot的C++实现的,底层类似一个 HashTable, 保存的本质上是字符串对象的引用。 看一道比较常见的面试题,下面的代码创建了多少个 String 对象?

String s1 = new String(“he”) + new String(“llo”);
String s2 = s1.intern();
System.out.println(s1 == s2);
// 在 JDK 1.6 下输出是 false,创建了 6 个对象
// 在 JDK 1.7 及以上的版本输出是 true,创建了 5 个对象
// 当然我们这里没有考虑GC,但这些对象确实存在或存在过

为什么输出会有这些变化呢?主要还是字符串池从永久代中脱离、移入堆区的原因, intern() 方法也相应发生了变 化:

1、在 JDK 1.6 中,调用 intern() 首先会在字符串池中寻找 equal() 相等的字符串,假如字符串存在就返回该字符串在字 符串池中的引用;假如字符串不存在,虚拟机会重新在永久代上创建一个实例,将 StringTable 的一个表项指向这个新 创建的实例。
在这里插入图片描述

2、在 JDK 1.7 (及以上版本)中,由于字符串池不在永久代了,intern() 做了一些修改,更方便地利用堆中的对象。字符 串存在时和 JDK 1.6一样,但是字符串不存在时不再需要重新创建实例,可以直接指向堆上的实例。
在这里插入图片描述
由上面两个图,也不难理解为什么 JDK 1.6 字符串池溢出会抛出 OutOfMemoryError: PermGen space ,而在 JDK 1.7 及以上版本抛出 OutOfMemoryError: Java heap space 。

String常量池问题的几个例子

示例1:

String s0=“str”;
String s1=“str”;
String s2=“st” + “r”;
System.out.println( s0s1 ); //true
System.out.println( s0
s2 ); //true

分析:因为例子中的 s0和s1中的”str”都是字符串常量,它们在编译期就被确定了,所以s0s1为true; 而”st”和”r”也都是字符串常量,当一个字 符串由多个字符串常量连接而成时,它自己肯定也是字符串常量,所 以s2也同样在编译期就被优化为一个字符串常量"str",所以s2也是常量池中” str”的一个引用。所以我们得出 s0s1==s2;

示例2:

//字符串常量池:“计算机"和"技术” 堆内存:str1引用的对象"计算机技术"
//堆内存中还有个StringBuilder的对象,但是会被gc回收,StringBuilder的toString方法会new String(),这个String才是真正返回的对 象引用
String str2 = new StringBuilder(“计算机”).append(“技术”).toString(); //没有出现"计算机技术"字面量,所以不会在常量池里生 成"计算机技术"对象
System.out.println(str2 == str2.intern()); //true
/
//字符串常量池:“ja"和"va” 堆内存:str1引用的对象"java"
//堆内存中还有个StringBuilder的对象,但是会被gc回收,StringBuilder的toString方法会new String(),这个String才是真正返回的对 象引用
String str1 = new StringBuilder(“ja”).append(“va”).toString(); //没有出现"java"字面量,所以不会在常量池里生成"java"对象
System.out.println(str1 == str1.intern()); //false
//java是关键字,在JVM初始化的相关类里肯定早就放进字符串常量池了

八种基本类型的包装类和对象池

java中基本类型的包装类的大部分都实现了常量池技术(严格来说应该叫对象池,在堆上),这些类是
Byte,Short,Integer,Long,Character,Boolean,另外两种浮点数类型的包装类则没有实现。另外
Byte,Short,Integer,Long,Character这5种整型的包装类也只是在对应值小于等于127时才可使用对象池,也即对象不负 责创建和管理大于127的这些类的对象。因为一般这种比较小的数用到的概率相对较大。

public class Test {

    public static void main(String[] args) {
        //5种整形的包装类Byte,Short,Integer,Long,Character的对象,  
        //在值小于127时可以使用对象池  
        Integer i1 = 127;  //这种调用底层实际是执行的Integer.valueOf(127),里面用到了IntegerCache对象池
        Integer i2 = 127;
        System.out.println(i1 == i2);//输出true  

        //值大于127时,不会从对象池中取对象  
        Integer i3 = 128;
        Integer i4 = 128;
        System.out.println(i3 == i4);//输出false  
        
        //用new关键词新生成对象不会使用对象池
        Integer i5 = new Integer(127);  
        Integer i6 = new Integer(127);
        System.out.println(i5 == i6);//输出false 

        //Boolean类也实现了对象池技术  
        Boolean bool1 = true;
        Boolean bool2 = true;
        System.out.println(bool1 == bool2);//输出true  

        //浮点类型的包装类没有实现对象池技术  
        Double d1 = 1.0;
        Double d2 = 1.0;
        System.out.println(d1 == d2);//输出false  
    }
} 

总结

以上就是今天要分享的内容,如有表述不清、错误还望海涵并指出。


版权声明:本文为qq_49281137原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。