曲率圆中心坐标公式_流形微分几何(5)——曲率

我不知道大家学没学曲线论和曲面论,但我就当大家学了,我以后可能会把这种

equation?tex=E3微分几何的内容写一下。另外上期有同学说要讲相流,那么下节我就把相流放在单参群里讲一下吧。

一、曲面上的测地线

考虑在曲面

equation?tex=S%3A%5Cbm+r%3D%5Cbm+r%28u%2Cv%29上的曲线
equation?tex=C%3A%5Cbm+r%28t%29%3D%5Cbm+r%5Bu%28t%29%2Cv%28t%29%5D,我们知道

equation?tex=%5Cfrac%7Bd%5E2%5Cbm+r%7D%7Bdt%5E2%7D%3Dk%5Cbm%5Cbeta,其中
equation?tex=k为曲率,
equation?tex=%5Cbm%5Cbeta为主法方向。

注意到

equation?tex=k%5Ccos%5Ctheta%3Dk%5Cbm%5Cbeta%5Ccdot%5Cbm+n%3D%5Cbm+n%5Ccdot%5Cfrac%7Bd%5E2%5Cbm+r%7D%7Bdt%5E2%7D

如果采用自然参数

equation?tex=t%3Ds,那么
equation?tex=k%5Ccos%5Ctheta%3D%5Cfrac%7B%5Cbm+n%5Ccdot+d%5E2%5Cbm+r%7D%7Bds%5E2%7D%3D%5Cfrac%7BII%7D%7BI%7D

其中

equation?tex=I%2CII为曲面
equation?tex=S的第一、第二基本形式。

我们用

equation?tex=k_n%3Dk%5Ccos%5Ctheta%3DII%2FI叫做曲面
equation?tex=S沿着方向
equation?tex=%5Cbm+r%27%28s%29
法曲率

a8b6a643464d22a3d6e21216cd23aaf5.png

(笔记本画图真麻烦)

我们仔细看看这个图,如果令

equation?tex=C%27
equation?tex=C在切平面
equation?tex=T_p+S上的投影曲线,那么

equation?tex=C%E7%9A%84%E6%9B%B2%E7%8E%87k%5Cbm%5Cbeta%5Cto+C%27%E7%9A%84%E6%9B%B2%E7%8E%87k_n%5Cbm+n

能不能理解?

当然证明是简单的(^_^。。。),留给读者(我错了)

大家看 我画出投影曲线

e98572cb3ff5ecca828b155e666b5622.png

两条蓝线分别为

equation?tex=C%2CC%27的切方向,明显它们都在
equation?tex=T_pS上,夹角为
equation?tex=%5Ctheta

那么明显

equation?tex=%5Cbm+n就是
equation?tex=C%27的主法矢量,这就出来了。

这个关系叫做Meusnier定理,大家可以在上图的基础上画出

equation?tex=C
equation?tex=C%27的曲率圆(。。。),这样会更直观,但我不想画了,笔记本鼠标贼难受。

曲面上如果某个方向的

equation?tex=d%5Cbm+r%2F%2Fd%5Cbm+n(就是比较平,比如平面就满足),那么这个方向叫做
主方向。沿着主方向的法曲率叫做 主曲率。注意,正交的
equation?tex=u%2Cv曲线为主方向,因为
equation?tex=%5Cgamma_u%3Adv%3D0%2C%5Cgamma_v%3Adu%3D0

那么设

equation?tex=k_1%2Ck_2为坐标网的主曲率,
equation?tex=%5Ctheta为对
equation?tex=u曲线的夹角(对
equation?tex=v曲线就是余角
equation?tex=%5Cpi%2F2-%5Ctheta),那么有
equation?tex=k_n%3Dk_1%5Ccos%5E2%5Ctheta%2Bk_2%5Csin%5E2%5Ctheta(Euler公式,证明挺容易的,设出形式
equation?tex=I%2CII直接算就行了)

如果我们令

equation?tex=%5Cphi%3D%5Cpi%2F2-%5Ctheta,那么
equation?tex=k_n%3Dk_1%5Ccos%5E2%5Ctheta%2Bk_2%5Ccos%5E2%5Cphi%3D%28k_1%5Ccos%5Ctheta%29%5Ccos%5Ctheta%2B%28k_2%5Ccos%5Cphi%29%5Ccos%5Cphi%3Dk_%7Bn1%7D%5Ccos%5Ctheta%2Bk_%7Bn2%7D%5Ccos%5Cphi

这是啥?对,这说明曲率是符合矢量的三角形法则的,所以我们就可以规定所谓的矢量法曲率

equation?tex=%5Cbm+k_n%3Dk_n%5Cbm+n。(顺便一提,上面的式子也叫Euler公式。。。数学上有很多Euler公式,就像有很多Gauss定理一样)

其实,物理上的加速度定义为

equation?tex=%5Cbm+a%3D%5Cfrac%7Bd%5E2%5Cbm+r%7D%7Bdt%5E2%7D%3D%5Cfrac%7Bd%5E2%5Cbm+r%7D%7Bds%5E2%7D%5Cfrac%7Bds%5E2%7D%7Bdt%5E2%7D%3D%5Cbm+k%5Cgamma%5E2

其中

equation?tex=%5Cgamma%3Dds%2Fdt,明显的
equation?tex=a%3D%5Cgamma%5E2%2C%5Cbm+k%3D%5Cbm+a%2F%7C%7C%5Cbm+a%7C%7C,对吧,这就是矢量曲率的最基本形式,即曲率乘上主法矢量
equation?tex=%5Cbm+k%3Dk%5Cbm%5Cbeta

此外,我们还会用到Gauss曲率

equation?tex=K%3Dk_1k_2和平均曲率
equation?tex=H%3D%5Cfrac%7Bk_1%2Bk_2%7D%7B2%7D,我们考虑
equation?tex=K%3D0
equation?tex=H%3D0的曲面。注意若
equation?tex=K%3D0,只要
equation?tex=k_1%2Ck_2一个为零就可以了,假设
equation?tex=k_1%3D0,这说明曲面在
equation?tex=u方向是直的,那么可以将其看成是平面沿着
equation?tex=v方向卷起来的,对
equation?tex=k_2%3D0同理,这种曲面叫做
可展曲面
equation?tex=H%3D0的曲面叫做
极小曲面,这是因为存在一个定理:给定曲面
equation?tex=S的边界
equation?tex=%5Cpartial+S,则若
equation?tex=H_S%3D0则曲面
equation?tex=S的表面积取最小值(注意不是极小值),证明自己去看微分几何的教科书(这可以看成两点之间直线最短的一般情况)。

曲面上曲线沿着切平面的投影具有重要意义,如果曲面曲线

equation?tex=C%5Csubset+S在每点
equation?tex=%5Cforall+p%5Cin+C上的切平面
equation?tex=T_p+S上的投影曲线
equation?tex=C_p%27都在
equation?tex=p点曲率为0(在
equation?tex=p点附近为直线),那么这段曲线就比较直,我们将其称为
测地线。对于一个曲面曲线,我们把其在切平面的投影曲线的曲率叫做 测地曲率
equation?tex=k_g,也就是说测地线是处处
equation?tex=k_g%5Cequiv+0的曲线。

容易看出

equation?tex=k%5E2%3Dk_g%5E2%2Bk_n%5E2,或者说
equation?tex=%5Cbegin%7Bcases%7D%5Cbm+k%3D%5Cbm+k_g%2B%5Cbm+k_n%5C%5C+%5Cbm+k_g%5Cbot%5Cbm+k_n%5Cend%7Bcases%7D,看下图

821c10d3b6c1affb3cb479ebe5a845cd.png

是不是简洁明了?注意蓝色的箭头是曲率矢量,

equation?tex=%5Cbm+k_n是向下穿过去的。那么对测地线,
equation?tex=%5Cbm+k_g%3D0,那么只有
equation?tex=%5Cbm+k%3D%5Cbm+k_n%5C+%5Cbot%5C++T_p+S了,对吧。

二、Christoffel记号

这种记号的优势是可以直接推向高维情况——流形,所以我们引入指标记号来表示曲面

equation?tex=S%3A%5Cbm+r%3D%5Cbm+r%28u%5E1%2Cu%5E2%29

偏导数就写成

equation?tex=%5Cpartial_k%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+u%5Ek%7D
equation?tex=%5Cbm+r_i%3D%5Cpartial_i%5Cbm+r
equation?tex=%5Cbm+r_%7Bij%7D%3D%5Cpartial_i%5Cpartial_j%5Cbm+r,由此
equation?tex=%5Cbm+n%3D%5Cfrac%7B%5Cbm+r_1%5Ctimes%5Cbm+r_2%7D%7B%5Csqrt%7B%5C+g%5C+%7D%7D

并且我们把第一基本量表示成度规的系数

equation?tex=g_%7Bij%7D%3D%5Cbm+r_i%5Ccdot%5Cbm+r_j%5Cto%5Cbegin%7Bcases%7DE%3Dg_%7B11%7D%5C%5CF%3Dg_%7B12%7D%3Dg_%7B21%7D%5C%5C+G%3Dg_%7B22%7D%5Cend%7Bcases%7D

并且

equation?tex=g%3D%5Cdet%7Ca_%7Bij%7D%7C%3DEG-F%5E2

第二基本量表示为

equation?tex=L_%7Bij%7D%3D%5Cbm+r_%7Bij%7D%5Ccdot%5Cbm+n

下面我们尝试把

equation?tex=D%5E2%5Cbm+r
equation?tex=D%5Cbm+n分别用
equation?tex=%28D%5Cbm+r%2C%5Cbm+n%29
equation?tex=D%5Cbm+r线性表示,其中
equation?tex=D为某个微分算子,我们待定系数为
equation?tex=%5Cbegin%7Bcases%7D+%5Cbm+r_%7Bij%7D%3D%5CGamma%5Ek_%7Bij%7D%5Cbm+r_k%2B%5Clambda_%7Bij%7D%5Cbm+n%5C%5C+%5Cbm+n_i%3D%5Cmu_i%5Ej%5Cbm+r_j+%5Cend%7Bcases%7D

第一式点乘

equation?tex=%5Cbm+n得到
equation?tex=L_%7Bij%7D%3D%5Clambda_%7Bij%7D%5Cbm+n%5E2%3D%5Clambda_%7Bij%7D(法向量已经归一化)

下面尝试定出

equation?tex=%5CGamma_%7Bij%7D%5Ek,为此我们有

equation?tex=g_%7Bij%7D%3D%5Cbm+r_i%5Ccdot%5Cbm+r_j%5Cto%5Cpartial_lg_%7Bij%7D%3D%5Cbm+r_%7Bil%7D%5Ccdot%5Cbm+r_j%2B%5Cbm+r_i%5Ccdot%5Cbm+r_%7Bjl%7D

轮换上式可以得到如下的关系式

equation?tex=%5Cfrac%7B1%7D%7B2%7D%5Cleft%28%5Cfrac%7B%5Cpartial+g_%7Bil%7D%7D%7B%5Cpartial+u%5Ej%7D%2B%5Cfrac%7B%5Cpartial+g_%7Bjl%7D%7D%7B%5Cpartial+u%5Ei%7D-%5Cfrac%7B%5Cpartial+g_%7Bij%7D%7D%7B%5Cpartial+u%5El%7D%5Cright%29%3D%5CGamma_%7Bij%7D%5Ekg_%7Bkl%7D%5Cquad%281%29

消去度规(用逆矩阵

equation?tex=g%5E%7Bij%7D)得到
equation?tex=%5CGamma_%7Bij%7D%5Ek%3D%5Cfrac%7B1%7D%7B2%7Dg%5E%7Bkl%7D%5Cleft%28%5Cfrac%7B%5Cpartial+g_%7Bil%7D%7D%7B%5Cpartial+u%5Ej%7D%2B%5Cfrac%7B%5Cpartial+g_%7Bjl%7D%7D%7B%5Cpartial+u%5Ei%7D-%5Cfrac%7B%5Cpartial+g_%7Bij%7D%7D%7B%5Cpartial+u%5El%7D%5Cright%29%5Cquad+%282%29

我们把(1)式叫做第一类Christoffel符号

equation?tex=%5Bij%2Cl%5D%3D%5CGamma_%7Bij%7D%5Ekg_%7Bkl%7D,把(2)式叫做第二类Christoffel符号
equation?tex=%5Cbegin%7BBmatrix%7Dk%5C%5Cij%5Cend%7BBmatrix%7D,但我们保留
equation?tex=%5CGamma_%7Bij%7D%5Ek的记号叫做Christoffel记号。

至于

equation?tex=%5Cmu_i%5Ej,可以定出
equation?tex=%5Cmu_i%5Ej%3D-g%5E%7Bjk%7DL_%7Bik%7D,具体留作练习

由此我们得到Gauss-Weingarten方程组

equation?tex=%5Cbegin%7Bcases%7D+%5Cbm+r_%7Bij%7D%3D%5CGamma%5Ek_%7Bij%7D%5Cbm+r_k%2BL_%7Bij%7D%5Cbm+n%5C%5C+%5Cbm+n_i%3D-g%5E%7Bjk%7DL_%7Bik%7D%5Cbm+r_j+%5Cend%7Bcases%7D

三、张量曲率——曲面的Riemann曲率

我们前面提到过,曲面的曲率有很多,比如法曲率、Gauss曲率、平均曲率、测地曲率等等等等,这和曲线完全不同,这是为什么呢?因为曲面比曲线整整高了一个自由度!曲面的各种曲率都是不完整的表达,完整的表达是Riemann曲率,这是一个张量,定义为

equation?tex=R_%7Bijk%7D%5El%3D%5Cpartial_k%5CGamma%5El_%7Bij%7D-%5Cpartial_j%5CGamma%5El_%7Bik%7D%2B%5CGamma_%7Bij%7D%5Ep%5CGamma_%7Bpk%7D%5El-%5CGamma_%7Bik%7D%5Ep%5CGamma_%7Bpj%7D%5El

别忘了后面的Einstein求和,这个式子可以形式的写成这样

equation?tex=R%5Cto%5Cbegin%7BVmatrix%7D%5Cpartial_k%26%5Cpartial_j%5C%5C%5CGamma%5El_%7Bik%7D%26%5CGamma%5El_%7Bij%7D%5Cend%7BVmatrix%7D%2B%5Cbegin%7BVmatrix%7D%5CGamma%5E%7B%5Ccolor%7Bblue%7D%7B%5Cbm+p%7D%7D_%7Bij%7D%26%5CGamma%5E%7B%5Ccolor%7Bblue%7D%7B%5Cbm+p%7D%7D_%7Bik%7D%5C%5C%5CGamma%5El_%7B%7B%5Ccolor%7Bblue%7D%7B%5Cbm+p%7D%7Dj%7D%26%5CGamma%5El_%7B%7B%5Ccolor%7Bblue%7D%7B%5Cbm+p%7D%7Dk%7D%5Cend%7BVmatrix%7D(蓝色的表示求和)

当然我们有时也把上指标降下来

equation?tex=R_%7Bmijk%7D%3Dg_%7Bml%7DR%5El_%7Bijk%7D

我们讨论Gauss-Weingarten方程组,通过一定的数学运算可以化成Gauss-Codazzi-Mainardi方程组

equation?tex=%5Cbegin%7Bcases%7DR_%7Bmijk%7D%3DL_%7Bij%7DL_%7Bmk%7D-L_%7Bik%7DL_%7Bmj%7D%5C%5C%5Cpartial_kL_%7Bij%7D-%5Cpartial_jL_%7Bik%7D%3D%5CGamma%5El_%7Bik%7DL_%7Blj%7D-%5CGamma_%7Bij%7D%5ElL_%7Blk%7D%5Cend%7Bcases%7D

观察第一个式子,我们注意到

equation?tex=R_%7B1212%7D%3DL_%7B12%7DL_%7B12%7D-L_%7B11%7DL_%7B22%7D%3D-Kg%5Cto+K%3D-R_%7B1212%7D%2Fg

下面我们看看如何在Euclid空间E

equation?tex=E%5En上建立Riemann曲率

考虑一个矢量场

equation?tex=%5Cbm+v在两个坐标系
equation?tex=%5C%7Bx%5Ei%5C%7D
equation?tex=%5C%7By%5Ei%5C%7D下的表达式
equation?tex=%5Cbm+v%3Dv%5Ei%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+x%5Ei%7D%3D%5Ctilde%7Bv%7D%5Ei%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+y%5Ei%7D

我们知道,坐标变换就相差两个坐标系的Jacobi行列式

equation?tex=%5Ctilde%7Bv%7D%5Ei%3Dv%5Ej%5Cfrac%7B%5Cpartial+y%5Ei%7D%7B%5Cpartial+x%5Ej%7D

我们对这个式子微分

equation?tex=d%5Ctilde%7Bv%7D%5Ei%3Ddv%5Ej%5Cfrac%7B%5Cpartial+y%5Ei%7D%7B%5Cpartial+x%5Ej%7D%2Bv%5Ejd%5Cleft%28%5Cfrac%7B%5Cpartial+y%5Ei%7D%7B%5Cpartial+x%5Ej%7D%5Cright%29(简单的Leibniz法则)

后面的全微分展开得到

equation?tex=d%5Cleft%28%5Cfrac%7B%5Cpartial+y%5Ei%7D%7B%5Cpartial+x%5Ej%7D%5Cright%29%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+x%5Ek%7D%5Cfrac%7B%5Cpartial+y%5Ei%7D%7B%5Cpartial+x%5Ej%7Ddx%5Ek

代入上式得到

equation?tex=d%5Ctilde%7Bv%7D%5Ei%3Ddv%5Ej%5Cfrac%7B%5Cpartial+y%5Ei%7D%7B%5Cpartial+x%5Ej%7D%2Bv%5Ej%5Cfrac%7B%5Cpartial%5E2+y%5Ei%7D%7B%5Cpartial+x%5Ej%5Cpartial+x%5Ek%7Ddx%5Ek

下面考虑流形

equation?tex=M,若存在度规
equation?tex=%5Cbm+g,或者说
equation?tex=M为一个Riemann流形,其某区域两个坐标卡
equation?tex=%5C%7Bx%5C%7D%2C%5C%7By%5C%7D,设
equation?tex=g_%7Bij%7D%3D%5Cbm+g%5Cleft%28%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+x%5Ei%7D%2C%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+x%5Ej%7D%5Cright%29%2C%5Ctilde+g_%7Bij%7D%3D%5Cbm+g%5Cleft%28%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+y%5Ei%7D%2C%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+y%5Ej%7D%5Cright%29

那么

equation?tex=g_%7Bij%7D%3D%5Ctilde%7Bg%7D_%7Brs%7D%5Cfrac%7B%5Cpartial+y%5Er%7D%7B%5Cpartial+x%5Ei%7D%5Cfrac%7B%5Cpartial+y%5Es%7D%7B%5Cpartial+x%5Ej%7D%5Cto%5CGamma%5Ek_%7Bij%7D%3D%5Ctilde%7B%5CGamma%7D%5El_%7Brs%7D%5Cfrac%7B%5Cpartial+y%5Er%7D%7B%5Cpartial+x%5Ei%7D%5Cfrac%7B%5Cpartial+y%5Es%7D%7B%5Cpartial+x%5Ej%7D%5Cfrac%7B%5Cpartial+x%5Ek%7D%7B%5Cpartial+y%5El%7D%2B%5Cfrac%7B%5Cpartial%5E2+y%5El%7D%7B%5Cpartial+x%5Ei%5Cpartial+x%5Ej%7D%5Cfrac%7B%5Cpartial+x%5Ek%7D%7B%5Cpartial+y%5El%7D

代入上式得到

equation?tex=%28d%5Ctilde+v%5Ei%2B%5Ctilde+v%5Er%5Ctilde%5CGamma%5Ei_%7Brs%7Ddy%5Es%29%3D%28dv%5Ej%2Bv%5Ep%5CGamma%5Ej_%7Bpq%7Ddx%5Eq%29%5Cfrac%7B%5Cpartial+y%5Ei%7D%7B%5Cpartial+x%5Ej%7D

由此,我们令

equation?tex=Dv%5Ei%3Ddv%5Ei%2Bv%5Er%5CGamma%5Ei_%7Brs%7Ddx%5Es
equation?tex=D%5Cbm+v%3DDv%5Ei%5Cpartial_i

那么

equation?tex=D%5Ctilde+v%5Ei%3DDv%5Ej%5Cfrac%7B%5Cpartial+y%5Ei%7D%7B%5Cpartial+x%5Ej%7D服从反变规律,我们把这种导数叫做
协变微分

我们知道,

equation?tex=D%5Cbm+v实际上不是向量,而是以一阶微分形式为分量的形式向量,所以我们令

equation?tex=D_%7B%5Cbm+X%7D%5Cbm+v%3DD%5Cbm+v%28%5Cbm+X%29%3D%5Cbm+X%28Dv%5Ei%29%5Cpartial_i

叫做

equation?tex=%5Cbm+v沿着方向
equation?tex=%5Cbm+X的协变导数,且明显地有
equation?tex=D_%7B%5Cpartial_j%7D%5Cpartial_i%3D%5CGamma%5Ek_%7Bij%7D%5Cpartial_k

根据协变导数我们定义这么一个张量

equation?tex=%5Cbm+R%5Cin%5Cmathscr+F_M%281%2C3%29

equation?tex=%5Cbm+R%28%5Cbm+u%2C%5Cbm+v%29%3A%5Cbm+t%5Cto+D_%7B%5Cbm+u%7DD_%7B%5Cbm+v%7D%5Cbm+t-D_%7B%5Cbm+v%7DD_%7B%5Cbm+u%7D%5Cbm+t-D_%7B%5B%5Cbm+u%2C%5Cbm+v%5D%7D%5Cbm+t

我们计算其分量

equation?tex=R%5El_%7Bijk%7D%3Ddx%5El%5Cleft%5C%7B%5B%5Cbm+R%28%5Cpartial_i%2C%5Cpartial_j%29%5D%28%5Cpartial_k%29%5Cright%5C%7D

equation?tex=%3Ddx%5El%5Cbigg%5BD_%7B%5Cpartial_i%7DD_%7B%5Cpartial_j%7D%5Cpartial_k-D_%7B%5Cpartial_j%7DD_%7B%5Cpartial_i%7D%5Cpartial_k%2BD_%7B%28%5Cpartial_i%5Cpartial_j-%5Cpartial_j%5Cpartial_i%29%7D%5Cpartial_k%5Cbigg%5D

注意到偏导数可交换

equation?tex=%5Cpartial_i%5Cpartial_j-%5Cpartial_j%5Cpartial_i%3D0,则上式可化为

equation?tex=dx%5El%5Cbigg%28D_%7B%5Cpartial_i%7DD_%7B%5Cpartial_j%7D%5Cpartial_k-D_%7B%5Cpartial_j%7DD_%7B%5Cpartial_i%7D%5Cpartial_k%5Cbigg%29%3Ddx%5El%5Cleft%28D_%7B%5Cpartial_i%7D%5CGamma%5Em_%7Bkj%7D%5Cpartial_m-D_%7B%5Cpartial_j%7D%5CGamma%5Em_%7Bki%7D%5Cpartial_m%5Cright%29

equation?tex=%3D%5Cleft%28D_%7B%5Cpartial_i%7D%5CGamma%5El_%7Bkj%7D%5Cpartial_l-D_%7B%5Cpartial_j%7D%5CGamma%5El_%7Bki%7D%5Cpartial_l%5Cright%29%5Cpartial_l%2B%28%E5%AF%B9m%E7%9A%84%E6%B1%82%E5%92%8C%E9%A1%B9%29%5Cquad%28%E5%AF%B9l%E5%8F%AA%E5%AF%B9%E6%8B%AC%E5%8F%B7%E5%A4%96%5Cpartial_l%E6%B1%82%E5%92%8C%29

equation?tex=%3D%28D_%7B%5Cpartial_i%7D%5CGamma%5El_%7Bkj%7D-D_%7B%5Cpartial_j%7D%5CGamma%5El_%7Bki%7D%2B%5CGamma%5Em_%7Bkj%7DD_%7B%5Cpartial_i%7D%5Cpartial_m-%5CGamma%5Em_%7Bki%7DD_%7B%5Cpartial_j%7D%5Cpartial_m%29%5Cpartial_l

equation?tex=%3D%5Cleft%28%5Cfrac%7B%5Cpartial%5CGamma%5El_%7Bkj%7D%7D%7B%5Cpartial+x%5Ei%7D-%5Cfrac%7B%5Cpartial%5CGamma%5El_%7Bki%7D%7D%7B%5Cpartial+x%5Ej%7D%2B%5CGamma%5Em_%7Bkj%7D%5CGamma%5El_%7Bmi%7D%2B%5CGamma%5Em_%7Bki%7D%5CGamma%5El_%7Bmj%7D%5Cright%29%5Cpartial_l

equation?tex=R%5El_%7Bkij%7D%3D%5Cfrac%7B%5Cpartial%5CGamma%5El_%7Bkj%7D%7D%7B%5Cpartial+x%5Ei%7D-%5Cfrac%7B%5Cpartial%5CGamma%5El_%7Bki%7D%7D%7B%5Cpartial+x%5Ej%7D%2B%5CGamma%5Em_%7Bkj%7D%5CGamma%5El_%7Bmi%7D%2B%5CGamma%5Em_%7Bki%7D%5CGamma%5El_%7Bmj%7D

就是Riemann曲率


版权声明:本文为weixin_33585889原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。