简介
基本结构:
#include <iostream>
using namespace std;
int main()
{
...
return 0;
}
C++ 是 C 的一个超集,事实上,任何合法的 C 程序都是合法的 C++ 程序。
面向对象程序设计
C++ 完全支持面向对象的程序设计,包括面向对象开发的四大特性:
封装
抽象
继承
多态
标准库
标准的 C++ 由三个重要部分组成:
- 核心语言,提供了所有构件块,包括变量、数据类型和常量,等等。
- C++ 标准库,提供了大量的函数,用于操作文件、字符串等。
- 标准模板库(STL),提供了大量的方法,用于操作数据结构等。
Linux下检查是否安装gcc编译器:
最简单的编译方式:
$ g++ helloworld.cpp
由于命令行中未指定可执行程序的文件名,编译器采用默认的 a.out。程序可以这样来运行:
$ ./a.out
Hello, world!
通常我们使用 -o 选项指定可执行程序的文件名,以下实例生成一个 helloworld 的可执行文件:
$ g++ helloworld.cpp -o helloworld
执行 helloworld:
$ ./helloworld
Hello, world!
如果是多个 C++ 代码文件,如 runoob1.cpp、runoob2.cpp,编译命令如下:
$ g++ runoob1.cpp runoob2.cpp -o runoob
生成一个 runoob 可执行文件。
g++ 有些系统默认是使用 C++98,我们可以指定使用 C++11 来编译 main.cpp 文件:
g++ -g -Wall -std=c++11 main.cpp
g++ 常用命令选项
选项 解释
-ansi 只支持 ANSI 标准的 C 语法。这一选项将禁止 GNU C 的某些特色, 例如 asm 或 typeof 关键词。
-c 只编译并生成目标文件。
-DMACRO 以字符串"1"定义 MACRO 宏。
-DMACRO=DEFN 以字符串"DEFN"定义 MACRO 宏。
-E 只运行 C 预编译器。
-g 生成调试信息。GNU 调试器可利用该信息。
-IDIRECTORY 指定额外的头文件搜索路径DIRECTORY。
-LDIRECTORY 指定额外的函数库搜索路径DIRECTORY。
-lLIBRARY 连接时搜索指定的函数库LIBRARY。
-m486 针对 486 进行代码优化。
-o FILE 生成指定的输出文件。用在生成可执行文件时。
-O0 不进行优化处理。
-O 或 -O1 优化生成代码。
-O2 进一步优化。
-O3 比 -O2 更进一步优化,包括 inline 函数。
-shared 生成共享目标文件。通常用在建立共享库时。
-static 禁止使用共享连接。
-UMACRO 取消对 MACRO 宏的定义。
-w 不生成任何警告信息。
-Wall 生成所有警告信息。
实际运行示例:
C++ 注释
程序的注释是解释性语句,您可以在 C++ 代码中包含注释,这将提高源代码的可读性。所有的编程语言都允许某种形式的注释。
C++ 支持单行注释和多行注释。注释中的所有字符会被 C++ 编译器忽略。
C++ 注释一般有两种:
- // - 一般用于单行注释。
- /* … */ - 一般用于多行注释。
注:补充
块注释符(/…/)是不可以嵌套使用的。
#if 0 … #endif 属于条件编译,0 即为参数。
此外,我们还可以使用 #if 0 … #endif 来实现注释,且可以实现嵌套,格式为:
#if 0
code
#endif
你可以把 #if 0 改成 #if 1 来执行 code 的代码。
这种形式对程序调试也可以帮助,测试时使用 #if 1 来执行测试代码,发布后使用 #if 0 来屏蔽测试代码。
#if 后可以是任意的条件语句。
下面的代码如果 condition 条件为 true 执行 code1 ,否则执行 code2。
#if condition
code1
#else
code2
#endif
C++ 数据类型
补充: wchar_t 是这样来的:
typedef short int wchar_t;
所以 wchar_t 实际上的空间是和 short int 一样。
一些基本类型可以使用一个或多个类型修饰符进行修饰:
signed
unsigned
short
long
示例:
cout << "int: \t\t" << "所占字节数:" << sizeof(int);
cout << "\t最大值:" << (numeric_limits<int>::max)();
cout << "\t最小值:" << (numeric_limits<int>::min)() << endl;
本实例使用了 endl,这将在每一行后插入一个换行符,<< 运算符用于向屏幕传多个值,sizeof() 函数用来获取各种数据类型的大小。
注:
typedef 声明
枚举类型enum
上述两者的语法与C无异
C++ 变量类型
C++ 中的变量声明
变量声明向编译器保证变量以给定的类型和名称存在,这样编译器在不需要知道变量完整细节的情况下也能继续进一步的编译。变量声明只在编译时有它的意义,在程序连接时编译器需要实际的变量声明。
当您使用多个文件且只在其中一个文件中定义变量时(定义变量的文件在程序连接时是可用的),变量声明就显得非常有用。您可以使用 extern 关键字在任何地方声明一个变量。虽然您可以在 C++ 程序中多次声明一个变量,但变量只能在某个文件、函数或代码块中被定义一次。
实例
尝试下面的实例,其中,变量在头部就已经被声明,但它们是在主函数内被定义和初始化的:
实例
#include
using namespace std;
// 变量声明
extern int a, b;
extern int c;
extern float f;
int main ()
{
// 变量定义
int a, b;
int c;
float f;
C++ 中的左值(Lvalues)和右值(Rvalues)
C++ 中有两种类型的表达式:
左值(lvalue):指向内存位置的表达式被称为左值(lvalue)表达式。左值可以出现在赋值号的左边或右边。
右值(rvalue):术语右值(rvalue)指的是存储在内存中某些地址的数值。右值是不能对其进行赋值的表达式,也就是说,右值可以出现在赋值号的右边,但不能出现在赋值号的左边。
变量是左值,因此可以出现在赋值号的左边。数值型的字面值是右值,因此不能被赋值,不能出现在赋值号的左边。下面是一个有效的语句:
int g = 20;
C++ 变量作用域
局部变量
在函数或一个代码块内部声明的变量,称为局部变量。它们只能被函数内部或者代码块内部的语句使用。
全局变量
在所有函数外部定义的变量(通常是在程序的头部),称为全局变量。全局变量的值在程序的整个生命周期内都是有效的。
全局变量可以被任何函数访问。也就是说,全局变量一旦声明,在整个程序中都是可用的。
初始化局部变量和全局变量
当局部变量被定义时,系统不会对其初始化,您必须自行对其初始化。定义全局变量时,系统会自动初始化为下列值:
数据类型 初始化默认值
int 0
char ‘\0’
float 0
double 0
pointer NULL
正确地初始化变量是一个良好的编程习惯,否则有时候程序可能会产生意想不到的结果。
C++常量
常量可以是任何的基本数据类型,可分为整型数字、浮点数字、字符、字符串和布尔值。
整数常量
整数常量可以是十进制、八进制或十六进制的常量。前缀指定基数:0x 或 0X 表示十六进制,0 表示八进制,不带前缀则默认表示十进制。
整数常量也可以带一个后缀,后缀是 U 和 L 的组合,U 表示无符号整数(unsigned),L 表示长整数(long)。后缀可以是大写,也可以是小写,U 和 L 的顺序任意。
下面列举几个整数常量的实例:
212 // 合法的
215u // 合法的
0xFeeL // 合法的
078 // 非法的:8 不是八进制的数字
032UU // 非法的:不能重复后缀
以下是各种类型的整数常量的实例:
85 // 十进制
0213 // 八进制
0x4b // 十六进制
30 // 整数
30u // 无符号整数
30l // 长整数
30ul // 无符号长整数
浮点常量
浮点常量由整数部分、小数点、小数部分和指数部分组成。您可以使用小数形式或者指数形式来表示浮点常量。
当使用小数形式表示时,必须包含整数部分、小数部分,或同时包含两者。当使用指数形式表示时, 必须包含小数点、指数,或同时包含两者。带符号的指数是用 e 或 E 引入的。
下面列举几个浮点常量的实例:
3.14159 // 合法的
314159E-5L // 合法的
510E // 非法的:不完整的指数
210f // 非法的:没有小数或指数
.e55 // 非法的:缺少整数或分数
字符常量
字符常量是括在单引号中。如果常量以 L(仅当大写时)开头,则表示它是一个宽字符常量(例如 L’x’),此时它必须存储在 wchar_t 类型的变量中。否则,它就是一个窄字符常量(例如 ‘x’),此时它可以存储在 char 类型的简单变量中。
字符常量可以是一个普通的字符(例如 ‘x’)、一个转义序列(例如 ‘\t’),或一个通用的字符(例如 ‘\u02C0’)。
在 C++ 中,有一些特定的字符,当它们前面有反斜杠时,它们就具有特殊的含义,被用来表示如换行符(\n)或制表符(\t)等。
字符串常量
字符串字面值或常量是括在双引号 “” 中的。一个字符串包含类似于字符常量的字符:普通的字符、转义序列和通用的字符。
您可以使用 \ 做分隔符,把一个很长的字符串常量进行分行。
string greeting2 = “hello,
runoob”;
cout << greeting2;
结果:hello, runoob
定义常量
在 C++ 中,有两种简单的定义常量的方式:
使用 #define 预处理器。
使用 const 关键字。
1、#define 预处理器
下面是使用 #define 预处理器定义常量的形式:
#define identifier value
2、const 关键字
您可以使用 const 前缀声明指定类型的常量,如下所示:
const type variable = value;
注意:把常量定义为大写字母形式,是一个很好的编程实践。
C++修饰符类型
C++ 允许使用速记符号来声明无符号短整数或无符号长整数。您可以不写 int,只写单词 unsigned、short 或 long,int 是隐含的。例如,下面的两个语句都声明了无符号整型变量。
unsigned x;
unsigned int y;
C++ 中的类型限定符
类型限定符提供了变量的额外信息。
限定符 含义
- const const 类型的对象在程序执行期间不能被修改改变。
- volatile 修饰符 volatile 告诉编译器不需要优化volatile声明的变量,让程序可以直接从内存中读取变量。对于一般的变量编译器会对变量进行优化,将内存中的变量值放在寄存器中以加快读写效率。
- restrict 由 restrict 修饰的指针是唯一一种访问它所指向的对象的方式。只有 C99 增加了新的类型限定符 restrict。
C++ 存储类
存储类定义 C++ 程序中变量/函数的范围(可见性)和生命周期。这些说明符放置在它们所修饰的类型之前。下面列出 C++ 程序中可用的存储类:
auto
register
static
extern
mutable
thread_local (C++11)
从 C++ 17 开始,auto 关键字不再是 C++ 存储类说明符,且 register 关键字被弃用。
1、auto
自 C++ 11 以来,auto 关键字用于两种情况:声明变量时根据初始化表达式自动推断该变量的类型、声明函数时函数返回值的占位符。
C++98标准中auto关键字用于自动变量的声明,但由于使用极少且多余,在 C++17 中已删除这一用法。
2、register
register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个词),且不能对它应用一元的 ‘&’ 运算符(因为它没有内存位置)。
{
register int miles;
}
3、static 存储类
static 存储类指示编译器在程序的生命周期内保持局部变量的存在,而不需要在每次它进入和离开作用域时进行创建和销毁。因此,使用 static 修饰局部变量可以在函数调用之间保持局部变量的值。
static 修饰符也可以应用于全局变量。当 static 修饰全局变量时,会使变量的作用域限制在声明它的文件内。
在 C++ 中,当 static 用在类数据成员上时,会导致仅有一个该成员的副本被类的所有对象共享。
4、extern 存储类
extern 存储类用于提供一个全局变量的引用,全局变量对所有的程序文件都是可见的。当您使用 ‘extern’ 时,对于无法初始化的变量,会把变量名指向一个之前定义过的存储位置。
当您有多个文件且定义了一个可以在其他文件中使用的全局变量或函数时,可以在其他文件中使用 extern 来得到已定义的变量或函数的引用。可以这么理解,extern 是用来在另一个文件中声明一个全局变量或函数。
extern 修饰符通常用于当有两个或多个文件共享相同的全局变量或函数的时候。
5、thread_local 存储类
使用 thread_local 说明符声明的变量仅可在它在其上创建的线程上访问。 变量在创建线程时创建,并在销毁线程时销毁。 每个线程都有其自己的变量副本。
thread_local 说明符可以与 static 或 extern 合并。
可以将 thread_local 仅应用于数据声明和定义,thread_local 不能用于函数声明或定义。
以下演示了可以被声明为 thread_local 的变量:
thread_local int x; // 命名空间下的全局变量
class X
{
static thread_local std::string s; // 类的static成员变量
};
static thread_local std::string X:?; // X:? 是需要定义的
void foo()
{
thread_local std::vector v; // 本地变量
}
C++ 运算符
^ 异或运算符,按二进制位进行"异或"运算。运算规则:
0^0=0;
0^1=1;
1^0=1;
1^1=0;
· << 二进制左移运算符。将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。
· >> 二进制右移运算符。将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。
C++ 数学运算
在 C++ 中,除了可以创建各种函数,还包含了各种有用的函数供您使用。这些函数写在标准 C 和 C++ 库中,叫做内置函数。您可以在程序中引用这些函数。
C++ 内置了丰富的数学函数,可对各种数字进行运算。下表列出了 C++ 中一些有用的内置的数学函数。
为了利用这些函数,您需要引用数学头文件。
序号 函数 & 描述
1 double cos(double);
该函数返回弧度角(double 型)的余弦。
2 double sin(double);
该函数返回弧度角(double 型)的正弦。
3 double tan(double);
该函数返回弧度角(double 型)的正切。
4 double log(double);
该函数返回参数的自然对数。
5 double pow(double, double);
假设第一个参数为 x,第二个参数为 y,则该函数返回 x 的 y 次方。
6 double hypot(double, double);
该函数返回两个参数的平方总和的平方根,也就是说,参数为一个直角三角形的两个直角边,函数会返回斜边的长度。
7 double sqrt(double);
该函数返回参数的平方根。
8 int abs(int);
该函数返回整数的绝对值。
9 double fabs(double);
该函数返回任意一个浮点数的绝对值。
10 double floor(double);
该函数返回一个小于或等于传入参数的最大整数。
C++ 随机数
在许多情况下,需要生成随机数。关于随机数生成器,有两个相关的函数。一个是 rand(),该函数只返回一个伪随机数。生成随机数之前必须先调用 srand() 函数。
下面是一个关于生成随机数的简单实例。实例中使用了 time() 函数来获取系统时间的秒数,通过调用 rand() 函数来生成随机数:
实例
#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;
int main ()
{
int i,j;
// 设置种子
srand( (unsigned)time( NULL ) );
/* 生成 10 个随机数 */
for( i = 0; i < 10; i++ )
{
// 生成实际的随机数
j= rand();
cout <<"随机数: " << j << endl;
}
return 0;
}
C++ 字符串
C++ 提供了以下两种类型的字符串表示形式:
- C 风格字符串
- C++ 引入的 string 类类型
C 风格字符串
C 风格的字符串起源于 C 语言,并在 C++ 中继续得到支持。字符串实际上是使用 null 字符 \0 终止的一维字符数组。因此,一个以 null 结尾的字符串,包含了组成字符串的字符。
下面的声明和初始化创建了一个 RUNOOB 字符串。由于在数组的末尾存储了空字符,所以字符数组的大小比单词 RUNOOB 的字符数多一个。
char site[7] = {‘R’, ‘U’, ‘N’, ‘O’, ‘O’, ‘B’, ‘\0’};
依据数组初始化规则,您可以把上面的语句写成以下语句:
char site[] = “RUNOOB”;
以下是 C/C++ 中定义的字符串的内存表示:
C/C++ 中的字符串表示
其实,您不需要把 null 字符放在字符串常量的末尾。C++ 编译器会在初始化数组时,自动把 \0 放在字符串的末尾。
C++ 中有大量的函数用来操作以 null 结尾的字符串:
序号 函数 & 目的
1 strcpy(s1, s2);
复制字符串 s2 到字符串 s1。
2 strcat(s1, s2);
连接字符串 s2 到字符串 s1 的末尾。连接字符串也可以用 + 号,例如:
string str1 = “runoob”;
string str2 = “google”;
string str = str1 + str2;
3 strlen(s1);
返回字符串 s1 的长度。
4 strcmp(s1, s2);
如果 s1 和 s2 是相同的,则返回 0;如果 s1<s2 则返回值小于 0;如果 s1>s2 则返回值大于 0。
5 strchr(s1, ch);
返回一个指针,指向字符串 s1 中字符 ch 的第一次出现的位置。
6 strstr(s1, s2);
返回一个指针,指向字符串 s1 中字符串 s2 的第一次出现的位置。
C++ 中的 String 类
C++ 标准库提供了 string 类类型,支持上述所有的操作,另外还增加了其他更多的功能。面向对象
C++引用
引用变量是一个别名,也就是说,它是某个已存在变量的另一个名字。一旦把引用初始化为某个变量,就可以使用该引用名称或变量名称来指向变量。
试想变量名称是变量附属在内存位置中的标签,您可以把引用当成是变量附属在内存位置中的第二个标签。因此,您可以通过原始变量名称或引用来访问变量的内容。例如:
int i = 17;
我们可以为 i 声明引用变量,如下所示:
int& r = i;
double& s = d;
C++ 把引用作为参数:
// 函数定义
void swap (int& x, int& y)
{
int temp;
temp = x; /* 保存地址 x 的值 /
x = y; / 把 y 赋值给 x /
y = temp; / 把 x 赋值给 y */
return;
}
/* 调用函数来交换值 */
swap(a, b);
C++ 把引用作为返回值:
double vals[] = {10.1, 12.6, 33.1, 24.1, 50.0};
double& setValues(int i) {
double& ref = vals[i];
return ref; // 返回第 i 个元素的引用,ref 是一个引用变量,ref 引用 vals[i]
}
setValues(1) = 20.23; // 改变第 2 个元素
setValues(3) = 70.8; // 改变第 4 个元素
当返回一个引用时,要注意被引用的对象不能超出作用域。所以返回一个对局部变量的引用是不合法的,但是,可以返回一个对静态变量的引用。
C++ 日期 & 时间
C++ 标准库没有提供所谓的日期类型。C++ 继承了 C 语言用于日期和时间操作的结构和函数。为了使用日期和时间相关的函数和结构,需要在 C++ 程序中引用 头文件。
有四个与时间相关的类型:clock_t、time_t、size_t 和 tm。类型 clock_t、size_t 和 time_t 能够把系统时间和日期表示为某种整数。
结构类型 tm 把日期和时间以 C 结构的形式保存
struct tm {
int tm_sec; // 秒,正常范围从 0 到 59,但允许至 61
int tm_min; // 分,范围从 0 到 59
int tm_hour; // 小时,范围从 0 到 23
int tm_mday; // 一月中的第几天,范围从 1 到 31
int tm_mon; // 月,范围从 0 到 11
int tm_year; // 自 1900 年起的年数
int tm_wday; // 一周中的第几天,范围从 0 到 6,从星期日算起
int tm_yday; // 一年中的第几天,范围从 0 到 365,从 1 月 1 日算起
int tm_isdst; // 夏令时
};
下面的实例获取当前系统的日期和时间,包括本地时间和协调世界时(UTC)。
实例
#include <iostream>
#include <ctime>
using namespace std;
int main( )
{
// 基于当前系统的当前日期/时间
time_t now = time(0);
// 把 now 转换为字符串形式
char* dt = ctime(&now);
cout << "本地日期和时间:" << dt << endl;
// 把 now 转换为 tm 结构
tm *gmtm = gmtime(&now);
dt = asctime(gmtm);
cout << "UTC 日期和时间:"<< dt << endl;
}
当上面的代码被编译和执行时,它会产生下列结果:
本地日期和时间:Sat Jan 8 20:07:41 2011
UTC 日期和时间:Sun Jan 9 03:07:41 2011
C++ 基本的输入输出
C++ 的 I/O 发生在流中,流是字节序列。如果字节流是从设备(如键盘、磁盘驱动器、网络连接等)流向内存,这叫做输入操作。如果字节流是从内存流向设备(如显示屏、打印机、磁盘驱动器、网络连接等),这叫做输出操作。
标准输出流(cout)
预定义的对象 cout 是 iostream 类的一个实例。cout 对象"连接"到标准输出设备,通常是显示屏。cout 是与流插入运算符 << 结合使用的,如下所示:
实例
#include
using namespace std;
int main( )
{
char str[] = “Hello C++”;
cout << "Value of str is : " << str << endl;
}
C++ 编译器根据要输出变量的数据类型,选择合适的流插入运算符来显示值。<< 运算符被重载来输出内置类型(整型、浮点型、double 型、字符串和指针)的数据项。
流插入运算符 << 在一个语句中可以多次使用,如上面实例中所示,endl 用于在行末添加一个换行符。
标准输入流(cin)
预定义的对象 cin 是 iostream 类的一个实例。cin 对象附属到标准输入设备,通常是键盘。cin 是与流提取运算符 >> 结合使用的,如下所示:
实例
#include
using namespace std;
int main( )
{
char name[50];
cout << "请输入您的名称: ";
cin >> name;
cout << "您的名称是: " << name << endl;
}
C++ 编译器根据要输入值的数据类型,选择合适的流提取运算符来提取值,并把它存储在给定的变量中。
流提取运算符 >> 在一个语句中可以多次使用,如果要求输入多个数据,可以使用如下语句:
cin >> name >> age;
这相当于下面两个语句:
cin >> name;
cin >> age;
标准错误流(cerr)
预定义的对象 cerr 是 iostream 类的一个实例。cerr 对象附属到标准错误设备,通常也是显示屏,但是 cerr 对象是非缓冲的,且每个流插入到 cerr 都会立即输出。
cerr 也是与流插入运算符 << 结合使用的,如下所示:
实例
#include
using namespace std;
int main( )
{
char str[] = “Unable to read…”;
cerr << "Error message : " << str << endl;
}
标准日志流(clog)
预定义的对象 clog 是 iostream 类的一个实例。clog 对象附属到标准错误设备,通常也是显示屏,但是 clog 对象是缓冲的。这意味着每个流插入到 clog 都会先存储在缓冲区,直到缓冲填满或者缓冲区刷新时才会输出。
clog 也是与流插入运算符 << 结合使用的
通过这些小实例,我们无法区分 cout、cerr 和 clog 的差异,但在编写和执行大型程序时,它们之间的差异就变得非常明显。所以良好的编程实践告诉我们,使用 cerr 流来显示错误消息,而其他的日志消息则使用 clog 流来输出。
C++ 数据结构
C/C++ 数组允许定义可存储相同类型数据项的变量,但是结构是 C++ 中另一种用户自定义的可用的数据类型,它允许您存储不同类型的数据项。
访问结构成员
为了访问结构的成员,我们使用成员访问运算符(.)。成员访问运算符是结构变量名称和我们要访问的结构成员之间的一个句号。
指向结构的指针
您可以定义指向结构的指针,方式与定义指向其他类型变量的指针相似,如下所示:
struct Books *struct_pointer;
现在,您可以在上述定义的指针变量中存储结构变量的地址。为了查找结构变量的地址,请把 & 运算符放在结构名称的前面,如下所示:
struct_pointer = &Book1;
为了使用指向该结构的指针访问结构的成员,您必须使用 -> 运算符,如下所示:
struct_pointer->title;
typedef 关键字
下面是一种更简单的定义结构的方式,您可以为创建的类型取一个"别名"。例如:
typedef struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
}Books;
现在,您可以直接使用 Books 来定义 Books 类型的变量,而不需要使用 struct 关键字。下面是实例:
Books Book1, Book2;
您可以使用 typedef 关键字来定义非结构类型,如下所示:
typedef long int *pint32;
pint32 x, y, z;
x, y 和 z 都是指向长整型 long int 的指针。
C++ 类 & 对象
注:
1、与类同名的函数是构造函数。
2、~ 类名的是类的析构函数。
实例
#include <iostream>
using namespace std;
class Box
{
public:
double length; // 长度
double breadth; // 宽度
double height; // 高度
// 成员函数声明
double get(void);
void set( double len, double bre, double hei );
};
// 成员函数定义
double Box::get(void)
{
return length * breadth * height;
}
void Box::set( double len, double bre, double hei)
{
length = len;
breadth = bre;
height = hei;
}
int main( )
{
Box Box1; // 声明 Box1,类型为 Box
Box Box2; // 声明 Box2,类型为 Box
Box Box3; // 声明 Box3,类型为 Box
double volume = 0.0; // 用于存储体积
// box 1 详述
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;
// box 2 详述
Box2.height = 10.0;
Box2.length = 12.0;
Box2.breadth = 13.0;
// box 1 的体积
volume = Box1.height * Box1.length * Box1.breadth;
cout << "Box1 的体积:" << volume <<endl;
// box 2 的体积
volume = Box2.height * Box2.length * Box2.breadth;
cout << "Box2 的体积:" << volume <<endl;
// box 3 详述
Box3.set(16.0, 8.0, 12.0);
volume = Box3.get();
cout << "Box3 的体积:" << volume <<endl;
return 0;
}
需要注意的是,私有的成员和受保护的成员不能使用直接成员访问运算符 (.) 来直接访问。我们将在后续的教程中学习如何访问私有成员和受保护的成员。
C++ 拷贝构造函数
拷贝构造函数是一种特殊的构造函数,它在创建对象时,是使用同一类中之前创建的对象来初始化新创建的对象。拷贝构造函数通常用于:
通过使用另一个同类型的对象来初始化新创建的对象。
复制对象把它作为参数传递给函数。
复制对象,并从函数返回这个对象。
如果在类中没有定义拷贝构造函数,编译器会自行定义一个。如果类带有指针变量,并有动态内存分配,则它必须有一个拷贝构造函数。拷贝构造函数的最常见形式如下:
classname (const classname &obj) {
// 构造函数的主体
}
C++ 友元函数
类的友元函数是定义在类外部,但有权访问类的所有私有(private)成员和保护(protected)成员。尽管友元函数的原型有在类的定义中出现过,但是友元函数并不是成员函数。
友元可以是一个函数,该函数被称为友元函数;友元也可以是一个类,该类被称为友元类,在这种情况下,整个类及其所有成员都是友元。
如果要声明函数为一个类的友元,需要在类定义中该函数原型前使用关键字 friend
class Box
{
double width;
public:
double length;
friend void printWidth( Box box );
void setWidth( double wid );
};
声明类 ClassTwo 的所有成员函数作为类 ClassOne 的友元,需要在类 ClassOne 的定义中放置如下声明:
friend class ClassTwo;
C++ 内联函数
C++ 内联函数是通常与类一起使用。如果一个函数是内联的,那么在编译时,编译器会把该函数的代码副本放置在每个调用该函数的地方。
对内联函数进行任何修改,都需要重新编译函数的所有客户端,因为编译器需要重新更换一次所有的代码,否则将会继续使用旧的函数。
如果想把一个函数定义为内联函数,则需要在函数名前面放置关键字 inline,在调用函数之前需要对函数进行定义。如果已定义的函数多于一行,编译器会忽略 inline 限定符。
在类定义中的定义的函数都是内联函数,即使没有使用 inline 说明符。
注:引入内联函数的目的是为了解决程序中函数调用的效率问题,这么说吧,程序在编译器编译的时候,编译器将程序中出现的内联函数的调用表达式用内联函数的函数体进行替换,而对于其他的函数,都是在运行时候才被替代。这其实就是个空间代价换时间的i节省。所以内联函数一般都是1-5行的小函数。在使用内联函数时要留神:
1.在内联函数内不允许使用循环语句和开关语句;
2.内联函数的定义必须出现在内联函数第一次调用之前;
3.类结构中所在的类说明内部定义的函数是内联函数。
C++ 继承
代码如下:
// 基类
class Animal {
// eat() 函数
// sleep() 函数
};
//派生类
class Dog : public Animal {
// bark() 函数
};
访问控制和继承
继承类型
当一个类派生自基类,该基类可以被继承为 public、protected 或 private 几种类型。继承类型是通过上面讲解的访问修饰符 access-specifier 来指定的。
我们几乎不使用 protected 或 private 继承,通常使用 public 继承。当使用不同类型的继承时,遵循以下几个规则:
- 公有继承(public):当一个类派生自公有基类时,基类的公有成员也是派生类的公有成员,基类的保护成员也是派生类的保护成员,基类的私有成员不能直接被派生类访问,但是可以通过调用基类的公有和保护成员来访问。
- 保护继承(protected): 当一个类派生自保护基类时,基类的公有和保护成员将成为派生类的保护成员。
- 私有继承(private):当一个类派生自私有基类时,基类的公有和保护成员将成为派生类的私有成员。
多继承
多继承即一个子类可以有多个父类,它继承了多个父类的特性。
C++ 类可以从多个类继承成员,语法如下:
class <派生类名>:<继承方式1><基类名1>,<继承方式2><基类名2>,…
{
<派生类类体>
};
其中,访问修饰符继承方式是 public、protected 或 private 其中的一个,用来修饰每个基类,各个基类之间用逗号分隔
另外多继承(环状继承)
,A->D, B->D, C->(A,B),例如:
class D{…};
class B: public D{…};
class A: public D{…};
class C: public B, public A{…};
这个继承会使D创建两个对象,要解决上面问题就要用虚拟继承格式
格式:class 类名: virtual 继承方式 父类名
class D{…};
class B: virtual public D{…};
class A: virtual public D{…};
class C: public B, public A{…};
C++ 数据抽象
数据抽象是指,只向外界提供关键信息,并隐藏其后台的实现细节,即只表现必要的信息而不呈现细节。
数据抽象是一种依赖于接口和实现分离的编程(设计)技术。
C++ 多态
多态按字面的意思就是多种形态。当类之间存在层次结构,并且类之间是通过继承关联时,就会用到多态。
C++ 多态意味着调用成员函数时,会根据调用函数的对象的类型来执行不同的函数。
虚函数
虚函数 是在基类中使用关键字 virtual 声明的函数。在派生类中重新定义基类中定义的虚函数时,会告诉编译器不要静态链接到该函数。
我们想要的是在程序中任意点可以根据所调用的对象类型来选择调用的函数,这种操作被称为动态链接,或后期绑定。
纯虚函数
您可能想要在基类中定义虚函数,以便在派生类中重新定义该函数更好地适用于对象,但是您在基类中又不能对虚函数给出有意义的实现,这个时候就会用到纯虚函数。
// pure virtual function
virtual int area() = 0;
= 0 告诉编译器,函数没有主体,上面的虚函数是纯虚函数。
C++ 接口(抽象类)
接口描述了类的行为和功能,而不需要完成类的特定实现。
C++ 接口是使用抽象类来实现的,抽象类与数据抽象互不混淆,数据抽象是一个把实现细节与相关的数据分离开的概念。
如果类中至少有一个函数被声明为纯虚函数,则这个类就是抽象类。纯虚函数是通过在声明中使用 “= 0” 来指定的,如下所示:
class Box
{
public:
// 纯虚函数
virtual double getVolume() = 0;
private:
double length; // 长度
double breadth; // 宽度
double height; // 高度
};
设计抽象类(通常称为 ABC)的目的,是为了给其他类提供一个可以继承的适当的基类。抽象类不能被用于实例化对象,它只能作为接口使用。如果试图实例化一个抽象类的对象,会导致编译错误。
因此,如果一个 ABC 的子类需要被实例化,则必须实现每个虚函数,这也意味着 C++ 支持使用 ABC 声明接口。如果没有在派生类中重写纯虚函数,就尝试实例化该类的对象,会导致编译错误。
可用于实例化对象的类被称为具体类。
C++ 文件和流
从文件读取流和向文件写入流。这就需要用到 C++ 中另一个标准库 fstream
要在 C++ 中进行文件处理,必须在 C++ 源代码文件中包含头文件
和 < fstream > 。
打开文件
在从文件读取信息或者向文件写入信息之前,必须先打开文件。ofstream 和 fstream 对象都可以用来打开文件进行写操作,如果只需要打开文件进行读操作,则使用 ifstream 对象。
下面是 open() 函数的标准语法,open() 函数是 fstream、ifstream 和 ofstream 对象的一个成员。
void open(const char *filename, ios::openmode mode);
在这里,open() 成员函数的第一参数指定要打开的文件的名称和位置,第二个参数定义文件被打开的模式。
模式标志 描述
ios::app 追加模式。所有写入都追加到文件末尾。
ios::ate 文件打开后定位到文件末尾。
ios::in 打开文件用于读取。
ios::out 打开文件用于写入。
ios::trunc 如果该文件已经存在,其内容将在打开文件之前被截断,即把文件长度设为 0。
如果想要打开一个文件用于读写,可以使用下面的语法:
ifstream afile;
afile.open(“file.dat”, ios::out | ios::in );
关闭文件
当 C++ 程序终止时,它会自动关闭刷新所有流,释放所有分配的内存,并关闭所有打开的文件。但程序员应该养成一个好习惯,在程序终止前关闭所有打开的文件。
下面是 close() 函数的标准语法,close() 函数是 fstream、ifstream 和 ofstream 对象的一个成员。
void close();
读取 & 写入实例
下面的 C++ 程序以读写模式打开一个文件。在向文件 afile.dat 写入用户输入的信息之后,程序从文件读取信息,并将其输出到屏幕上:
#include <fstream>
#include <iostream>
using namespace std;
int main ()
{
char data[100];
// 以写模式打开文件
ofstream outfile;
outfile.open("afile.dat");
cout << "Writing to the file" << endl;
cout << "Enter your name: ";
cin.getline(data, 100);
// 向文件写入用户输入的数据
outfile << data << endl;
cout << "Enter your age: ";
cin >> data;
cin.ignore();
// 再次向文件写入用户输入的数据
outfile << data << endl;
// 关闭打开的文件
outfile.close();
// 以读模式打开文件
ifstream infile;
infile.open("afile.dat");
cout << "Reading from the file" << endl;
infile >> data;
// 在屏幕上写入数据
cout << data << endl;
// 再次从文件读取数据,并显示它
infile >> data;
cout << data << endl;
// 关闭打开的文件
infile.close();
return 0;
}
当上面的代码被编译和执行时,它会产生下列输入和输出:
$./a.out
Writing to the file
Enter your name: Zara
Enter your age: 9
Reading from the file
Zara
9
上面的实例中使用了 cin 对象的附加函数,比如 getline()函数从外部读取一行,ignore() 函数会忽略掉之前读语句留下的多余字符。
C++ 异常处理
异常是程序在执行期间产生的问题。C++ 异常是指在程序运行时发生的特殊情况,比如尝试除以零的操作。
异常提供了一种转移程序控制权的方式。C++ 异常处理涉及到三个关键字:try、catch、throw。
- throw: 当问题出现时,程序会抛出一个异常。这是通过使用 throw 关键字来完成的。
- catch: 在您想要处理问题的地方,通过异常处理程序捕获异常。catch 关键字用于捕获异常。
- try: try 块中的代码标识将被激活的特定异常。它后面通常跟着一个或多个 catch 块。
下面是一个实例,抛出一个除以零的异常,并在 catch 块中捕获该异常。
实例
#include <iostream>
using namespace std;
double division(int a, int b)
{
if( b == 0 )
{
throw "Division by zero condition!";
}
return (a/b);
}
int main ()
{
int x = 50;
int y = 0;
double z = 0;
try {
z = division(x, y);
cout << z << endl;
}catch (const char* msg) {
cerr << msg << endl;
}
return 0;
}
由于我们抛出了一个类型为 const char* 的异常,因此,当捕获该异常时,我们必须在 catch 块中使用 const char*。当上面的代码被编译和执行时,它会产生下列结果:
Division by zero condition!
C++ 标准的异常
C++ 提供了一系列标准的异常,定义在 中,我们可以在程序中使用这些标准的异常。它们是以父子类层次结构组织起来的,如下所示:
定义新的异常
您可以通过继承和重载 exception 类来定义新的异常。下面的实例演示了如何使用 std::exception 类来实现自己的异常:
实例
#include <iostream>
#include <exception>
using namespace std;
struct MyException : public exception
{
const char * what () const throw ()
{
return "C++ Exception";
}
};
int main()
{
try
{
throw MyException();
}
catch(MyException& e)
{
std::cout << "MyException caught" << std::endl;
std::cout << e.what() << std::endl;
}
catch(std::exception& e)
{
//其他的错误
}
}
这将产生以下结果:
MyException caught
C++ Exception
在这里,what() 是异常类提供的一个公共方法,它已被所有子异常类重载。这将返回异常产生的原因。
C++ 动态内存
了解动态内存在 C++ 中是如何工作的是成为一名合格的 C++ 程序员必不可少的。C++ 程序中的内存分为两个部分:
- 栈:在函数内部声明的所有变量都将占用栈内存。
- 堆:这是程序中未使用的内存,在程序运行时可用于动态分配内存。
很多时候,您无法提前预知需要多少内存来存储某个定义变量中的特定信息,所需内存的大小需要在运行时才能确定。
在 C++ 中,您可以使用特殊的运算符为给定类型的变量在运行时分配堆内的内存,这会返回所分配的空间地址。这种运算符即 new 运算符。
如果您不再需要动态分配的内存空间,可以使用 delete 运算符,删除之前由 new 运算符分配的内存。
new 和 delete 运算符
下面是使用 new 运算符来为任意的数据类型动态分配内存的通用语法:
new data-type;
在这里,data-type 可以是包括数组在内的任意内置的数据类型,也可以是包括类或结构在内的用户自定义的任何数据类型。让我们先来看下内置的数据类型。例如,我们可以定义一个指向 double 类型的指针,然后请求内存,该内存在执行时被分配。我们可以按照下面的语句使用 new 运算符来完成这点:
double* pvalue = NULL; // 初始化为 null 的指针
pvalue = new double; // 为变量请求内存
如果自由存储区已被用完,可能无法成功分配内存。所以建议检查 new 运算符是否返回 NULL 指针,并采取以下适当的操作:
double* pvalue = NULL;
if( !(pvalue = new double ))
{
cout << "Error: out of memory." <<endl;
exit(1);
}
malloc() 函数在 C 语言中就出现了,在 C++ 中仍然存在,但建议尽量不要使用 malloc() 函数。new 与 malloc() 函数相比,其主要的优点是,new 不只是分配了内存,它还创建了对象。
在任何时候,当您觉得某个已经动态分配内存的变量不再需要使用时,您可以使用 delete 操作符释放它所占用的内存,如下所示:
delete pvalue; // 释放 pvalue 所指向的内存
C++ 命名空间
例如,您可能会写一个名为 xyz() 的函数,在另一个可用的库中也存在一个相同的函数 xyz()。这样,编译器就无法判断您所使用的是哪一个 xyz() 函数。
因此,引入了命名空间这个概念,专门用于解决上面的问题,它可作为附加信息来区分不同库中相同名称的函数、类、变量等。使用了命名空间即定义了上下文。本质上,命名空间就是定义了一个范围。
定义命名空间
命名空间的定义使用关键字 namespace,后跟命名空间的名称,如下所示:
namespace namespace_name {
// 代码声明
}
为了调用带有命名空间的函数或变量,需要在前面加上命名空间的名称,如下所示:
name::code; // code 可以是变量或函数
让我们来看看命名空间如何为变量或函数等实体定义范围:
实例
#include <iostream>
using namespace std;
// 第一个命名空间
namespace first_space{
void func(){
cout << "Inside first_space" << endl;
}
}
// 第二个命名空间
namespace second_space{
void func(){
cout << "Inside second_space" << endl;
}
}
int main ()
{
// 调用第一个命名空间中的函数
first_space::func();
// 调用第二个命名空间中的函数
second_space::func();
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Inside first_space
Inside second_space
using 指令
您可以使用 using namespace 指令,这样在使用命名空间时就可以不用在前面加上命名空间的名称。这个指令会告诉编译器,后续的代码将使用指定的命名空间中的名称。
实例
#include <iostream>
using namespace std;
// 第一个命名空间
namespace first_space{
void func(){
cout << "Inside first_space" << endl;
}
}
// 第二个命名空间
namespace second_space{
void func(){
cout << "Inside second_space" << endl;
}
}
using namespace first_space;
int main ()
{
// 调用第一个命名空间中的函数
func();
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Inside first_space
using 指令也可以用来指定命名空间中的特定项目。例如,如果您只打算使用 std 命名空间中的 cout 部分,您可以使用如下的语句:
using std::cout;
随后的代码中,在使用 cout 时就可以不用加上命名空间名称作为前缀,但是 std 命名空间中的其他项目仍然需要加上命名空间名称作为前缀,如下所示:
实例
#include <iostream>
using std::cout;
int main ()
{
cout << "std::endl is used with std!" << std::endl;
return 0;
}
不连续的命名空间
命名空间可以定义在几个不同的部分中,因此命名空间是由几个单独定义的部分组成的。一个命名空间的各个组成部分可以分散在多个文件中。
所以,如果命名空间中的某个组成部分需要请求定义在另一个文件中的名称,则仍然需要声明该名称。下面的命名空间定义可以是定义一个新的命名空间,也可以是为已有的命名空间增加新的元素:
namespace namespace_name {
// 代码声明
}
嵌套的命名空间
命名空间可以嵌套,您可以在一个命名空间中定义另一个命名空间,如下所示:
namespace namespace_name1 {
// 代码声明
namespace namespace_name2 {
// 代码声明
}
}
您可以通过使用 :: 运算符来访问嵌套的命名空间中的成员:
// 访问 namespace_name2 中的成员
using namespace namespace_name1::namespace_name2;
// 访问 namespace:name1 中的成员
using namespace namespace_name1;
在上面的语句中,如果使用的是 namespace_name1,那么在该范围内 namespace_name2 中的元素也是可用的
C++ 函数模板
函数模板是通用的函数描述,它们使用泛型来定义函数,其中的泛型可用具体的类型替换。通过将类型作为参数传递给模板,可使编译器生成该类型的函数。由于模板允许以泛型(而不是具体类型)的方式编写程序,因此有时候也被称为通用编程。
在C++11中,可以将class替换为typename。
C++ 预处理器
预处理器是一些指令,指示编译器在实际编译之前所需完成的预处理。
所有的预处理器指令都是以井号(#)开头,只有空格字符可以出现在预处理指令之前。预处理指令不是 C++ 语句,所以它们不会以分号(;)结尾。
我们已经看到,之前所有的实例中都有 #include 指令。这个宏用于把头文件包含到源文件中。
C++ 还支持很多预处理指令,比如 #include、#define、#if、#else、#line 等,让我们一起看看这些重要指令。
#define 预处理
#define 预处理指令用于创建符号常量。该符号常量通常称为宏,指令的一般形式是:
#define macro-name replacement-text
如 #define PI 3.14159
参数宏
如 #define MIN(a,b) (a<b ? a : b)
条件编译
有几个指令可以用来有选择地对部分程序源代码进行编译。这个过程被称为条件编译。
条件预处理器的结构与 if 选择结构很像。请看下面这段预处理器的代码:
#ifdef NULL
#define NULL 0
#endif
#和 ## 运算符
#和 ## 预处理运算符在 C++ 和 ANSI/ISO C 中都是可用的。# 运算符会把 replacement-text 令牌转换为用引号引起来的字符串。
实例
#include <iostream>
using namespace std;
#define MKSTR( x ) #x
int main ()
{
cout << MKSTR(HELLO C++) << endl;
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
HELLO C++
让我们来看看它是如何工作的。不难理解,C++ 预处理器把下面这行:
cout << MKSTR(HELLO C++) << endl;
转换成了:
cout << “HELLO C++” << endl;
##运算符
用于连接两个令牌。下面是一个实例:
#define CONCAT( x, y ) x ## y
当 CONCAT 出现在程序中时,它的参数会被连接起来,并用来取代宏。例如,程序中 CONCAT(HELLO, C++) 会被替换为 “HELLO C++”,如下面实例所示。
实例
#include <iostream>
using namespace std;
#define concat(a, b) a ## b
int main()
{
int xy = 100;
cout << concat(x, y);
return 0;
}
让我们来看看它是如何工作的。不难理解,C++ 预处理器把下面这行:
cout << concat(x, y);
转换成了:
cout << xy;
C++ 中的预定义宏
C++ 提供了下表所示的一些预定义宏:
宏 描述
__LINE__这会在程序编译时包含当前行号。
__FILE__这会在程序编译时包含当前文件名。
__DATE__这会包含一个形式为 month/day/year 的字符串,它表示把源文件转换为目标代码的日期。
__TIME__这会包含一个形式为 hour:minute:second 的字符串,它表示程序被编译的时间。
让我们看看上述这些宏的实例:
实例
#include <iostream>
using namespace std;
int main ()
{
cout << "Value of __LINE__ : " << __LINE__ << endl;
cout << "Value of __FILE__ : " << __FILE__ << endl;
cout << "Value of __DATE__ : " << __DATE__ << endl;
cout << "Value of __TIME__ : " << __TIME__ << endl;
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of __LINE__ : 6
Value of __FILE__ : test.cpp
Value of __DATE__ : Feb 28 2011
Value of __TIME__ : 18:52:48
C++ 信号处理
信号是由操作系统传给进程的中断,会提早终止一个程序。在 UNIX、LINUX、Mac OS X 或 Windows 系统上,可以通过按 Ctrl+C 产生中断。
有些信号不能被程序捕获,但是下表所列信号可以在程序中捕获,并可以基于信号采取适当的动作。这些信号是定义在 C++ 头文件 中。
信号 描述
SIGABRT 程序的异常终止,如调用 abort。
SIGFPE 错误的算术运算,比如除以零或导致溢出的操作。
SIGILL 检测非法指令。
SIGINT 程序终止(interrupt)信号。
SIGSEGV 非法访问内存。
SIGTERM 发送到程序的终止请求。
signal() 函数
C++ 信号处理库提供了 signal 函数,用来捕获突发事件。以下是 signal() 函数的语法:
void (*signal (int sig, void (*func)(int)))(int);
这个看起来有点费劲,以下语法格式更容易理解:
signal(registered signal, signal handler)
这个函数接收两个参数:第一个参数是一个整数,代表了信号的编号;第二个参数是一个指向信号处理函数的指针。
让我们编写一个简单的 C++ 程序,使用 signal() 函数捕获 SIGINT 信号。不管您想在程序中捕获什么信号,您都必须使用 signal 函数来注册信号,并将其与信号处理程序相关联。看看下面的实例:
实例
#include <iostream>
#include <csignal>
#include <unistd.h>
using namespace std;
void signalHandler( int signum )
{
cout << "Interrupt signal (" << signum << ") received.\n";
// 清理并关闭
// 终止程序
exit(signum);
}
int main ()
{
// 注册信号 SIGINT 和信号处理程序
signal(SIGINT, signalHandler);
while(1){
cout << "Going to sleep...." << endl;
sleep(1);
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Going to sleep…
Going to sleep…
Going to sleep…
现在,按 Ctrl+C 来中断程序,您会看到程序捕获信号,程序打印如下内容并退出:
Going to sleep…
Going to sleep…
Going to sleep…
Interrupt signal (2) received.
raise() 函数
您可以使用函数 raise() 生成信号,该函数带有一个整数信号编号作为参数,语法如下:
int raise (signal sig);
在这里,sig 是要发送的信号的编号,这些信号包括:SIGINT、SIGABRT、SIGFPE、SIGILL、SIGSEGV、SIGTERM、SIGHUP。
以下是我们使用 raise() 函数内部生成信号的实例:
...
int main ()
{
int i = 0;
// 注册信号 SIGINT 和信号处理程序
signal(SIGINT, signalHandler);
while(++i){
cout << "Going to sleep...." << endl;
if( i == 3 ){
raise( SIGINT);
}
sleep(1);
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果,并会自动退出:
Going to sleep…
Going to sleep…
Going to sleep…
Interrupt signal (2) received.
侵删