# 从sklearn.datasets 导入 iris数据加载器。
from sklearn.datasets import load_iris
# 使用加载器读取数据并且存入变量iris。
iris = load_iris()
# 查验数据规模。
print (iris.data.shape)
a = iris.data
print (a[1])
# 查看数据说明。对于一名机器学习的实践者来讲,这是一个好习惯。
print (iris.DESCR)输出为:(150, 4) [ 4.9 3. 1.4 0.2]
====================
Notes
-----
Data Set Characteristics:
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:# 从sklearn.cross_validation里选择导入train_test_split用于数据分割。
from sklearn.model_selection import train_test_split
# 从使用train_test_split,利用随机种子random_state采样25%的数据作为测试集。
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
# 从sklearn.preprocessing里选择导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
# 从sklearn.neighbors里选择导入KNeighborsClassifier,即K近邻分类器。
from sklearn.neighbors import KNeighborsClassifier
# 对训练和测试的特征数据进行标准化。
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
# 使用K近邻分类器对测试数据进行类别预测,预测结果储存在变量y_predict中。
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test)
# 使用模型自带的评估函数进行准确性测评。
print ('The accuracy of K-Nearest Neighbor Classifier is', knc.score(X_test, y_test) )
输出为:The accuracy of K-Nearest Neighbor Classifier is 0.894736842105
# 依然使用sklearn.metrics里面的classification_report模块对预测结果做更加详细的分析。
from sklearn.metrics import classification_report
print (classification_report(y_test, y_predict, target_names=iris.target_names))
precision recall f1-score support
setosa 1.00 1.00 1.00 8
versicolor 0.73 1.00 0.85 11
virginica 1.00 0.79 0.88 19
avg / total 0.92 0.89 0.90 38版权声明:本文为weixin_37978606原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。