python提取指定内容_Python提取特定时间段内数据的方法实例

python提取特定时间段内的数据

尝试一下:

data['Date'] = pd.to_datetime(data['Date'])

data = data[(data['Date'] >=pd.to_datetime('20120701')) & (data['Date'] <= pd.to_datetime('20120831'))]

实际测试

'''

Created on 2019年1月3日

@author: hcl

'''

import pandas as pd

import matplotlib.pyplot as plt

data_path = 'one_20axyz.csv'

if __name__ == '__main__':

msg = pd.read_csv(data_path)

# ID_set = set(msg['Time'].tolist())

# ID_list = list(ID_set)

# print(len(msg['Time'].tolist()),len(ID_list),len(msg['Time'].tolist())/len(ID_list))#打印数据量 多少秒 平均每秒多少个

# print(msg.head(10))

# left_a = msg[msg['leg'] == 1]['az']# right_a = msg[msg['leg'] == 2]['az']# plt.plot(left_a,label = 'left_a')

# plt.plot(right_a,label = 'right_a')

# plt.legend(loc = 'best')

# plt.show()

left_msg = msg[msg['leg'] == 1] #DataFrame

data = left_msg[(pd.to_datetime(left_msg['Time'] ,format = '%H:%M:%S')>= pd.to_datetime('16:23:42',format = '%H:%M:%S')) & (pd.to_datetime(left_msg['Time'] ,format = '%H:%M:%S') <= pd.to_datetime('16:23:52',format = '%H:%M:%S'))]# print(msg.head())

print(data)

输出:

Time ID leg ax ay az a Rssi

1 16:23:42 5 1 0.6855 -0.6915 0.1120 0.980116 -34

3 16:23:42 5 1 0.6800 -0.6440 0.1365 0.946450 -31

5 16:23:42 5 1 0.7145 -0.7240 0.1095 1.023072 -34

7 16:23:42 5 1 0.7050 -0.6910 0.1080 0.993061 -30

9 16:23:42 5 1 0.7120 -0.6400 0.0920 0.961773 -31

10 16:23:42 5 1 0.7150 -0.6810 0.1290 0.995805 -34

12 16:23:42 5 1 0.7250 -0.6655 0.1890 1.002116 -32

13 16:23:42 5 1 0.7160 -0.7065 0.1000 1.010840 -31

15 16:23:42 5 1 0.7545 -0.6990 0.1715 1.042729 -30

17 16:23:42 5 1 0.7250 -0.6910 0.1325 1.010278 -31

19 16:23:42 5 1 0.7520 -0.7260 0.1820 1.060992 -33

21 16:23:42 5 1 0.7005 -0.7150 0.0605 1.002789 -33

23 16:23:42 5 1 0.7185 -0.6630 0.1430 0.988059 -30

25 16:23:42 5 1 0.7170 -0.7040 0.0920 1.009044 -34

27 16:23:42 5 1 0.7230 -0.6810 0.1060 0.998862 -31

29 16:23:42 5 1 0.7230 -0.6720 0.0940 0.991539 -31

31 16:23:42 5 1 0.6955 -0.6975 0.0720 0.987629 -33

32 16:23:42 5 1 0.7430 -0.6895 0.1495 1.024602 -34

34 16:23:43 5 1 0.7360 -0.6855 0.1200 1.012920 -32

36 16:23:43 5 1 0.7160 -0.7000 0.1330 1.010121 -30

38 16:23:43 5 1 0.7095 -0.7165 0.1090 1.014221 -31

40 16:23:43 5 1 0.7195 -0.6895 0.1270 1.004599 -34

44 16:23:43 5 1 0.7315 -0.6855 0.1000 1.007473 -34

46 16:23:43 5 1 0.7240 -0.7020 0.0960 1.013013 -31

48 16:23:43 5 1 0.7240 -0.7010 0.0970 1.012416 -32

50 16:23:43 5 1 0.7380 -0.6820 0.1480 1.015713 -34