目录
主从库如何实现数据一致?谈谈你对主从复制的理解
redis 主从复制是啥?-What
主从复制:指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master/Leader),后者称为从节点(Slave/Follower), 数据的复制是单向的!只能由主节点复制到从节点(主节点以写为主、从节点以读为主)。Redis的主从复制是异步复制,异步分为两个方面,一个是master服务器在将数据同步到slave时是异步的,因此master服务器在这里仍然可以接收其他请求,一个是slave在接收同步数据也是异步的。
读写分离保证高可用 Redis 提供了主从库模式,以保证数据副本的一致,
读操作:主库、从库都可以接收;
写操作:首先到主库执行,然后,主库将写操作同步给从库。
为什么要采用读写分离的方式呢?
如果不采用读写分离的方式,对于数据一致性的维护需要涉及到加锁、实例间协商是否完成修改等一系列操作的巨额的开销。主从库模式一旦采用了读写分离,所有数据的修改只会在主库上进行,不用协调三个实例。主库有了最新的数据后,会同步给从库,这样,主从库的数据就是一致的。
那主从库同步是如何完成的呢?-How
主从库间如何进行第一次同步?
- 第一阶段是主从库间建立连接、协商同步的过程,主要是为全量复制做准备。在这一步,从库和主库建立起连接,并告诉主库即将进行同步,主库确认回复后,主从库间就可以开始同步了。
psync 命令包含了主库的 runID 和复制进度 offset 两个参数。 - 在第二阶段,主库将所有数据同步给从库。从库收到数据后,在本地完成数据加载。过程依赖于内存快照 RDB 。主库不会被阻塞,仍然可以正常接收请求。为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录 RDB 文件生成后收到的所有写操作。
- 第三个阶段,主库会把第二阶段执行过程中新收到的写命令,再发送给从库。
主从级联模式分担全量复制时的主库压力
两个耗时的操作:生成 RDB 文件和传输 RDB 文件。如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量同步。可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。
要是主从库间的网络断连了,数据还能保持一致吗?
主从库会采用增量复制的方式继续同步。
全量复制是同步所有数据,而增量复制只会把主从库网络断连期间主库收到的命令,同步给从库。
- 当主从库断连后,主库会把断连期间收到的写操作命令,写入 replication buffer,同时也会把这些操作命令也写入 repl_backlog_buffer 这个缓冲区。
repl_backlog_buffer 是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己已经读到的位置。恢复时主库和从库之间相差的操作,在增量复制时,主库会把它们同步给从库。


问题因为repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。
如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。
解决可以根据 Redis 所在服务器的内存资源再适当增加 repl_backlog_size 值,比如说设置成缓冲空间大小的 4 倍,另一方面,你可以考虑使用切片集群来分担单个主库的请求压力。
1、repl_backlog_buffer:它是为了从库断开之后,如何找到主从差异数据而设计的环形缓冲区,从而避免全量同步带来的性能开销。如果从库断开时间太久,repl_backlog_buffer环形缓冲区被主库的写命令覆盖了,那么从库连上主库后只能乖乖地进行一次全量同步,所以repl_backlog_buffer配置尽量大一些,可以降低主从断开后全量同步的概率。而在repl_backlog_buffer中找主从差异的数据后,如何发给从库呢?这就用到了replication buffer。
2、replication buffer:Redis和客户端通信也好,和从库通信也好,Redis都需要给分配一个 内存buffer进行数据交互,客户端是一个client,从库也是一个client,我们每个client连上Redis后,Redis都会分配一个client buffer,所有数据交互都是通过这个buffer进行的:Redis先把数据写到这个buffer中,然后再把buffer中的数据发到client socket中再通过网络发送出去,这样就完成了数据交互。所以主从在增量同步时,从库作为一个client,也会分配一个buffer,只不过这个buffer专门用来传播用户的写命令到从库,保证主从数据一致,我们通常把它叫做replication buffer。
3、再延伸一下,既然有这个内存buffer存在,那么这个buffer有没有限制呢?如果主从在传播命令时,因为某些原因从库处理得非常慢,那么主库上的这个buffer就会持续增长,消耗大量的内存资源,甚至OOM。所以Redis提供了client-output-buffer-limit参数限制这个buffer的大小,如果超过限制,主库会强制断开这个client的连接,也就是说从库处理慢导致主库内存buffer的积压达到限制后,主库会强制断开从库的连接,此时主从复制会中断,中断后如果从库再次发起复制请求,那么此时可能会导致恶性循环,引发复制风暴,这种情况需要格外注意。
如何避免主从库间的异步进行的命令复制导致的数据不一致呢?
异步:具体来说,在主从库命令传播阶段,主库收到新的写命令后,会发送给从库。但是,主库并不会等到从库实际执行完命令后,再把结果返回给客户端,而是主库自己在本地执行完命令后,就会向客户端返回结果了。如果从库还没有执行主库同步过来的命令,主从库间的数据就不一致了。
怎么应对呢?
- 首先,在硬件环境配置方面,我们要尽量保证主从库间的网络连接状况良好。
- 可以开发一个外部程序来监控主从库间的复制进度。
如何避免使用 Redis 主从集群时,读到过期数据呢?
Redis 为什么还能在从库中读到过期的数据呢?
这是由 Redis 的过期数据删除策略引起的。Redis 同时使用了两种策略来删除过期的数据,分别是惰性删除策略和定期删除策略。
- 惰性删除策略。当一个数据的过期时间到了以后,并不会立即删除数据,而是等到再有请求来读写这个数据时,对数据进行检查,如果发现数据已经过期了,再删除这个数据。
优点:是尽量减少删除操作对 CPU 资源的使用,对于用不到的数据,就不再浪费时间进行检查和删除了。
缺点:导致大量已经过期的数据留存在内存中,占用较多的内存资源。 - 定期删除策略。Redis 每隔一段时间(默认 100ms),就会随机选出一定数量的数据,检查它们是否过期,并把其中过期的数据删除,这样就可以及时释放一些内存。
定期删除策略可以释放一些内存,但是,Redis 为了避免过多删除操作对性能产生影响,每次随机检查数据的数量并不多。如果过期数据很多,并且一直没有再被访问的话,这些数据就会留存在 Redis 实例中。业务应用之所以会读到过期数据,这些留存数据就是一个重要因素。
惰性删除策略实现后,数据只有被再次访问时,才会被实际删除。如果客户端从主库上读取留存的过期数据,主库会触发删除操作,此时,客户端并不会读到过期数据。但是,从库本身不会执行删除操作,如果客户端在从库中访问留存的过期数据,从库并不会触发数据删除。




![]()

为了避免这种情况,建议是,在业务应用中使用 EXPIREAT/PEXPIREAT 命令,把数据的过期时间设置为具体的时间点,避免读到过期数据。