C 判断
判断结构要求程序员指定一个或多个要评估或测试的条件,以及条件为真时要执行的语句(必需的)和条件为假时要执行的语句(可选的)。
C 语言把任何非零和非空的值假定为 true,把零或 null 假定为 false。
下面是大多数编程语言中典型的判断结构的一般形式:

判断语句
C 语言提供了以下类型的判断语句。点击链接查看每个语句的细节。
| 语句 | 描述 |
|---|---|
| if 语句 | 一个 if 语句 由一个布尔表达式后跟一个或多个语句组成。 |
| if...else 语句 | 一个 if 语句 后可跟一个可选的 else 语句,else 语句在布尔表达式为假时执行。 |
| 嵌套 if 语句 | 您可以在一个 if 或 else if 语句内使用另一个 if 或 else if 语句。 |
| switch 语句 | 一个 switch 语句允许测试一个变量等于多个值时的情况。 |
| 嵌套 switch 语句 | 您可以在一个 switch 语句内使用另一个 switch 语句。 |
? : 运算符(三元运算符)
我们已经在前面的章节中讲解了 条件运算符 ? :,可以用来替代 if...else 语句。它的一般形式如下:
Exp1 ? Exp2 : Exp3;其中,Exp1、Exp2 和 Exp3 是表达式。请注意,冒号的使用和位置。
? 表达式的值是由 Exp1 决定的。如果 Exp1 为真,则计算 Exp2 的值,结果即为整个表达式的值。如果 Exp1 为假,则计算 Exp3 的值,结果即为整个表达式的值。

实例
以下实例通过输入一个数字来判断它是否为奇数或偶数
实例
#include<stdio.h> int main() { int num; printf("输入一个数字 : "); scanf("%d",&num); (num%2==0)?printf("偶数"):printf("奇数"); }C 循环
有的时候,我们可能需要多次执行同一块代码。一般情况下,语句是按顺序执行的:函数中的第一个语句先执行,接着是第二个语句,依此类推。
编程语言提供了更为复杂执行路径的多种控制结构。
循环语句允许我们多次执行一个语句或语句组,下面是大多数编程语言中循环语句的流程图:

循环类型
C 语言提供了以下几种循环类型。点击链接查看每个类型的细节。
| 循环类型 | 描述 |
|---|---|
| while 循环 | 当给定条件为真时,重复语句或语句组。它会在执行循环主体之前测试条件。 |
| for 循环 | 多次执行一个语句序列,简化管理循环变量的代码。 |
| do...while 循环 | 除了它是在循环主体结尾测试条件外,其他与 while 语句类似。 |
| 嵌套循环 | 您可以在 while、for 或 do..while 循环内使用一个或多个循环。 |
循环控制语句
循环控制语句改变你代码的执行顺序。通过它你可以实现代码的跳转。
C 提供了下列的循环控制语句。点击链接查看每个语句的细节。
| 控制语句 | 描述 |
|---|---|
| break 语句 | 终止循环或 switch 语句,程序流将继续执行紧接着循环或 switch 的下一条语句。 |
| continue 语句 | 告诉一个循环体立刻停止本次循环迭代,重新开始下次循环迭代。 |
| goto 语句 | 将控制转移到被标记的语句。但是不建议在程序中使用 goto 语句。 |
无限循环
如果条件永远不为假,则循环将变成无限循环。for 循环在传统意义上可用于实现无限循环。由于构成循环的三个表达式中任何一个都不是必需的,您可以将某些条件表达式留空来构成一个无限循环。
实例
#include <stdio.h> int main () { for( ; ; ) { printf("该循环会永远执行下去!\n"); } return 0; }当条件表达式不存在时,它被假设为真。您也可以设置一个初始值和增量表达式,但是一般情况下,C 程序员偏向于使用 for(;;) 结构来表示一个无限循环。
注意:您可以按 Ctrl + C 键终止一个无限循环。
C 函数
函数是一组一起执行一个任务的语句。每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数。
您可以把代码划分到不同的函数中。如何划分代码到不同的函数中是由您来决定的,但在逻辑上,划分通常是根据每个函数执行一个特定的任务来进行的。
函数声明告诉编译器函数的名称、返回类型和参数。函数定义提供了函数的实际主体。
C 标准库提供了大量的程序可以调用的内置函数。例如,函数 strcat() 用来连接两个字符串,函数 memcpy() 用来复制内存到另一个位置。
函数还有很多叫法,比如方法、子例程或程序,等等。
定义函数
C 语言中的函数定义的一般形式如下:
return_type function_name( parameter list )
{
body of the function
}在 C 语言中,函数由一个函数头和一个函数主体组成。下面列出一个函数的所有组成部分:
- 返回类型:一个函数可以返回一个值。return_type 是函数返回的值的数据类型。有些函数执行所需的操作而不返回值,在这种情况下,return_type 是关键字 void。
- 函数名称:这是函数的实际名称。函数名和参数列表一起构成了函数签名。
- 参数:参数就像是占位符。当函数被调用时,您向参数传递一个值,这个值被称为实际参数。参数列表包括函数参数的类型、顺序、数量。参数是可选的,也就是说,函数可能不包含参数。
- 函数主体:函数主体包含一组定义函数执行任务的语句。
实例
以下是 max() 函数的源代码。该函数有两个参数 num1 和 num2,会返回这两个数中较大的那个数:
/* 函数返回两个数中较大的那个数 */ int max(int num1, int num2) { /* 局部变量声明 */ int result; if (num1 > num2) result = num1; else result = num2; return result; }
函数声明
函数声明会告诉编译器函数名称及如何调用函数。函数的实际主体可以单独定义。
函数声明包括以下几个部分:
return_type function_name( parameter list );针对上面定义的函数 max(),以下是函数声明:
int max(int num1, int num2);在函数声明中,参数的名称并不重要,只有参数的类型是必需的,因此下面也是有效的声明:
int max(int, int);当您在一个源文件中定义函数且在另一个文件中调用函数时,函数声明是必需的。在这种情况下,您应该在调用函数的文件顶部声明函数。
调用函数
创建 C 函数时,会定义函数做什么,然后通过调用函数来完成已定义的任务。
当程序调用函数时,程序控制权会转移给被调用的函数。被调用的函数执行已定义的任务,当函数的返回语句被执行时,或到达函数的结束括号时,会把程序控制权交还给主程序。
调用函数时,传递所需参数,如果函数返回一个值,则可以存储返回值。例如:
实例
#include <stdio.h> /* 函数声明 */ int max(int num1, int num2); int main () { /* 局部变量定义 */ int a = 100; int b = 200; int ret; /* 调用函数来获取最大值 */ ret = max(a, b); printf( "Max value is : %d\n", ret ); return 0; } /* 函数返回两个数中较大的那个数 */ int max(int num1, int num2) { /* 局部变量声明 */ int result; if (num1 > num2) result = num1; else result = num2; return result; }
把 max() 函数和 main() 函数放一块,编译源代码。当运行最后的可执行文件时,会产生下列结果:
Max value is : 200函数参数
如果函数要使用参数,则必须声明接受参数值的变量。这些变量称为函数的形式参数。
形式参数就像函数内的其他局部变量,在进入函数时被创建,退出函数时被销毁。
当调用函数时,有两种向函数传递参数的方式:
| 调用类型 | 描述 |
|---|---|
| 传值调用 | 该方法把参数的实际值复制给函数的形式参数。在这种情况下,修改函数内的形式参数不会影响实际参数。 |
| 引用调用 | 通过指针传递方式,形参为指向实参地址的指针,当对形参的指向操作时,就相当于对实参本身进行的操作。 |
默认情况下,C 使用传值调用来传递参数。一般来说,这意味着函数内的代码不能改变用于调用函数的实际参数。
C 作用域规则
任何一种编程中,作用域是程序中定义的变量所存在的区域,超过该区域变量就不能被访问。C 语言中有三个地方可以声明变量:
- 在函数或块内部的局部变量
- 在所有函数外部的全局变量
- 在形式参数的函数参数定义中
让我们来看看什么是局部变量、全局变量和形式参数。
局部变量
在某个函数或块的内部声明的变量称为局部变量。它们只能被该函数或该代码块内部的语句使用。局部变量在函数外部是不可知的。下面是使用局部变量的实例。在这里,所有的变量 a、b 和 c 是 main() 函数的局部变量。
实例
#include <stdio.h> int main () { /* 局部变量声明 */ int a, b; int c; /* 实际初始化 */ a = 10; b = 20; c = a + b; printf ("value of a = %d, b = %d and c = %d\n", a, b, c); return 0; }
全局变量
全局变量是定义在函数外部,通常是在程序的顶部。全局变量在整个程序生命周期内都是有效的,在任意的函数内部能访问全局变量。
全局变量可以被任何函数访问。也就是说,全局变量在声明后整个程序中都是可用的。下面是使用全局变量和局部变量的实例:
实例
#include <stdio.h> /* 全局变量声明 */ int g; int main () { /* 局部变量声明 */ int a, b; /* 实际初始化 */ a = 10; b = 20; g = a + b; printf ("value of a = %d, b = %d and g = %d\n", a, b, g); return 0; }
在程序中,局部变量和全局变量的名称可以相同,但是在函数内,如果两个名字相同,会使用局部变量值,全局变量不会被使用。下面是一个实例:
在程序中,局部变量和全局变量的
实例
#include <stdio.h> /* 全局变量声明 */ int g = 20; int main () { /* 局部变量声明 */ int g = 10; printf ("value of g = %d\n", g); return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
value of g = 10形式参数
函数的参数,形式参数,被当作该函数内的局部变量,如果与全局变量同名它们会优先使用。下面是一个实例:
实例
#include <stdio.h> /* 全局变量声明 */ int a = 20; int main () { /* 在主函数中的局部变量声明 */ int a = 10; int b = 20; int c = 0; int sum(int, int); printf ("value of a in main() = %d\n", a); c = sum( a, b); printf ("value of c in main() = %d\n", c); return 0; } /* 添加两个整数的函数 */ int sum(int a, int b) { printf ("value of a in sum() = %d\n", a); printf ("value of b in sum() = %d\n", b); return a + b; }
当上面的代码被编译和执行时,它会产生下列结果:
value of a in main() = 10
value of a in sum() = 10
value of b in sum() = 20
value of c in main() = 30全局变量与局部变量在内存中的区别:
- 全局变量保存在内存的全局存储区中,占用静态的存储单元;
- 局部变量保存在栈中,只有在所在函数被调用时才动态地为变量分配存储单元。
更多内容可参考:C/C++ 中 static 的用法全局变量与局部变量
初始化局部变量和全局变量
当局部变量被定义时,系统不会对其初始化,您必须自行对其初始化。定义全局变量时,系统会自动对其初始化,如下所示:
| 数据类型 | 初始化默认值 |
|---|---|
| int | 0 |
| char | '\0' |
| float | 0 |
| double | 0 |
| pointer | NULL |
正确地初始化变量是一个良好的编程习惯,否则有时候程序可能会产生意想不到的结果,因为未初始化的变量会导致一些在内存位置中已经可用的垃圾值。
C 数组
C 语言支持数组数据结构,它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据,但它往往被认为是一系列相同类型的变量。
数组的声明并不是声明一个个单独的变量,比如 runoob0、runoob1、...、runoob99,而是声明一个数组变量,比如 runoob,然后使用 runoob[0]、runoob[1]、...、runoob[99] 来代表一个个单独的变量。
所有的数组都是由连续的内存位置组成。最低的地址对应第一个元素,最高的地址对应最后一个元素。

数组中的特定元素可以通过索引访问,第一个索引值为 0。

声明数组
在 C 中要声明一个数组,需要指定元素的类型和元素的数量,如下所示:
type arrayName [ arraySize ];这叫做一维数组。arraySize 必须是一个大于零的整数常量,type 可以是任意有效的 C 数据类型。例如,要声明一个类型为 double 的包含 10 个元素的数组 balance,声明语句如下:
double balance[10];现在 balance 是一个可用的数组,可以容纳 10 个类型为 double 的数字。
初始化数组
在 C 中,您可以逐个初始化数组,也可以使用一个初始化语句,如下所示:
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};大括号 { } 之间的值的数目不能大于我们在数组声明时在方括号 [ ] 中指定的元素数目。
如果您省略掉了数组的大小,数组的大小则为初始化时元素的个数。因此,如果:
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};您将创建一个数组,它与前一个实例中所创建的数组是完全相同的。下面是一个为数组中某个元素赋值的实例:
balance[4] = 50.0;上述的语句把数组中第五个元素的值赋为 50.0。所有的数组都是以 0 作为它们第一个元素的索引,也被称为基索引,数组的最后一个索引是数组的总大小减去 1。以下是上面所讨论的数组的的图形表示:

下图是一个长度为 10 的数组,第一个元素的索引值为 0,第九个元素 runoob 的索引值为 8:

访问数组元素
数组元素可以通过数组名称加索引进行访问。元素的索引是放在方括号内,跟在数组名称的后边。例如:
double salary = balance[9];上面的语句将把数组中第 10 个元素的值赋给 salary 变量。下面的实例使用了上述的三个概念,即,声明数组、数组赋值、访问数组:
实例
#include <stdio.h> int main () { int n[ 10 ]; /* n 是一个包含 10 个整数的数组 */ int i,j; /* 初始化数组元素 */ for ( i = 0; i < 10; i++ ) { n[ i ] = i + 100; /* 设置元素 i 为 i + 100 */ } /* 输出数组中每个元素的值 */ for (j = 0; j < 10; j++ ) { printf("Element[%d] = %d\n", j, n[j] ); } return 0; }当上面的代码被编译和执行时,它会产生下列结果:
Element[0] = 100
Element[1] = 101
Element[2] = 102
Element[3] = 103
Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109C 中数组详解
在 C 中,数组是非常重要的,我们需要了解更多有关数组的细节。下面列出了 C 程序员必须清楚的一些与数组相关的重要概念:
| 概念 | 描述 |
|---|---|
| 多维数组 | C 支持多维数组。多维数组最简单的形式是二维数组。 |
| 传递数组给函数 | 您可以通过指定不带索引的数组名称来给函数传递一个指向数组的指针。 |
| 从函数返回数组 | C 允许从函数返回数组。 |
| 指向数组的指针 | 您可以通过指定不带索引的数组名称来生成一个指向数组中第一个元素的指针。 |
C enum(枚举)
枚举是 C 语言中的一种基本数据类型,它可以让数据更简洁,更易读。
枚举语法定义格式为:
enum 枚举名 {枚举元素1,枚举元素2,……};接下来我们举个例子,比如:一星期有 7 天,如果不用枚举,我们需要使用 #define 来为每个整数定义一个别名:
#define MON 1 #define TUE 2 #define WED 3 #define THU 4 #define FRI 5 #define SAT 6 #define SUN 7
这个看起来代码量就比较多,接下来我们看看使用枚举的方式:
enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
};这样看起来是不是更简洁了。
注意:第一个枚举成员的默认值为整型的 0,后续枚举成员的值在前一个成员上加 1。我们在这个实例中把第一个枚举成员的值定义为 1,第二个就为 2,以此类推。
可以在定义枚举类型时改变枚举元素的值:
enum season {spring, summer=3, autumn, winter};没有指定值的枚举元素,其值为前一元素加 1。也就说 spring 的值为 0,summer 的值为 3,autumn 的值为 4,winter 的值为 5
枚举变量的定义
前面我们只是声明了枚举类型,接下来我们看看如何定义枚举变量。
我们可以通过以下三种方式来定义枚举变量
1、先定义枚举类型,再定义枚举变量
enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
};
enum DAY day;2、定义枚举类型的同时定义枚举变量
enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;3、省略枚举名称,直接定义枚举变量
enum
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;实例
#include <stdio.h> enum DAY { MON=1, TUE, WED, THU, FRI, SAT, SUN }; int main() { enum DAY day; day = WED; printf("%d",day); return 0; }
以上实例输出结果为:
3在C 语言中,枚举类型是被当做 int 或者 unsigned int 类型来处理的,所以按照 C 语言规范是没有办法遍历枚举类型的。
不过在一些特殊的情况下,枚举类型必须连续是可以实现有条件的遍历。
以下实例使用 for 来遍历枚举的元素:
实例
#include <stdio.h> enum DAY { MON=1, TUE, WED, THU, FRI, SAT, SUN } day; int main() { // 遍历枚举元素 for (day = MON; day <= SUN; day++) { printf("枚举元素:%d \n", day); } }
以上实例输出结果为:
枚举元素:1
枚举元素:2
枚举元素:3
枚举元素:4
枚举元素:5
枚举元素:6
枚举元素:7以下枚举类型不连续,这种枚举无法遍历。
enum
{
ENUM_0,
ENUM_10 = 10,
ENUM_11
};枚举在 switch 中的使用:
实例
#include <stdio.h> #include <stdlib.h> int main() { enum color { red=1, green, blue }; enum color favorite_color; /* 用户输入数字来选择颜色 */ printf("请输入你喜欢的颜色: (1. red, 2. green, 3. blue): "); scanf("%u", &favorite_color); /* 输出结果 */ switch (favorite_color) { case red: printf("你喜欢的颜色是红色"); break; case green: printf("你喜欢的颜色是绿色"); break; case blue: printf("你喜欢的颜色是蓝色"); break; default: printf("你没有选择你喜欢的颜色"); } return 0; }
以上实例输出结果为:
请输入你喜欢的颜色: (1. red, 2. green, 3. blue): 1
你喜欢的颜色是红色将整数转换为枚举
以下实例将整数转换为枚举:
实例
#include <stdio.h> #include <stdlib.h> int main() { enum day { saturday, sunday, monday, tuesday, wednesday, thursday, friday } workday; int a = 1; enum day weekend; weekend = ( enum day ) a; //类型转换 //weekend = a; //错误 printf("weekend:%d",weekend); return 0; }
以上实例输出结果为:
weekend:1
C 指针
学习 C 语言的指针既简单又有趣。通过指针,可以简化一些 C 编程任务的执行,还有一些任务,如动态内存分配,没有指针是无法执行的。所以,想要成为一名优秀的 C 程序员,学习指针是很有必要的。
正如您所知道的,每一个变量都有一个内存位置,每一个内存位置都定义了可使用 & 运算符访问的地址,它表示了在内存中的一个地址。
请看下面的实例,它将输出定义的变量地址:
实例
#include <stdio.h> int main () { int var_runoob = 10; int *p; // 定义指针变量 p = &var_runoob; printf("var_runoob 变量的地址: %p\n", p); return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
var_runoob 变量的地址: 0x7ffeeaae08d8
通过上面的实例,我们了解了什么是内存地址以及如何访问它。接下来让我们看看什么是指针。
什么是指针?
指针也就是内存地址,指针变量是用来存放内存地址的变量。就像其他变量或常量一样,您必须在使用指针存储其他变量地址之前,对其进行声明。指针变量声明的一般形式为:
type *var-name;在这里,type 是指针的基类型,它必须是一个有效的 C 数据类型,var-name 是指针变量的名称。用来声明指针的星号 * 与乘法中使用的星号是相同的。但是,在这个语句中,星号是用来指定一个变量是指针。以下是有效的指针声明:
int *ip; /* 一个整型的指针 */ double *dp; /* 一个 double 型的指针 */ float *fp; /* 一个浮点型的指针 */ char *ch; /* 一个字符型的指针 */
所有实际数据类型,不管是整型、浮点型、字符型,还是其他的数据类型,对应指针的值的类型都是一样的,都是一个代表内存地址的长的十六进制数。
不同数据类型的指针之间唯一的不同是,指针所指向的变量或常量的数据类型不同。
如何使用指针?
使用指针时会频繁进行以下几个操作:定义一个指针变量、把变量地址赋值给指针、访问指针变量中可用地址的值。这些是通过使用一元运算符 * 来返回位于操作数所指定地址的变量的值。下面的实例涉及到了这些操作:
实例
#include <stdio.h> int main () { int var = 20; /* 实际变量的声明 */ int *ip; /* 指针变量的声明 */ ip = &var; /* 在指针变量中存储 var 的地址 */ printf("var 变量的地址: %p\n", &var ); /* 在指针变量中存储的地址 */ printf("ip 变量存储的地址: %p\n", ip ); /* 使用指针访问值 */ printf("*ip 变量的值: %d\n", *ip ); return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
var 变量的地址: 0x7ffeeef168d8
ip 变量存储的地址: 0x7ffeeef168d8
*ip 变量的值: 20C 中的 NULL 指针
在变量声明的时候,如果没有确切的地址可以赋值,为指针变量赋一个 NULL 值是一个良好的编程习惯。赋为 NULL 值的指针被称为空指针。
NULL 指针是一个定义在标准库中的值为零的常量。请看下面的程序:
实例
#include <stdio.h> int main () { int *ptr = NULL; printf("ptr 的地址是 %p\n", ptr ); return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
ptr 的地址是 0x0在大多数的操作系统上,程序不允许访问地址为 0 的内存,因为该内存是操作系统保留的。然而,内存地址 0 有特别重要的意义,它表明该指针不指向一个可访问的内存位置。但按照惯例,如果指针包含空值(零值),则假定它不指向任何东西。
如需检查一个空指针,您可以使用 if 语句,如下所示:
if(ptr) /* 如果 p 非空,则完成 */ if(!ptr) /* 如果 p 为空,则完成 */
C 指针详解
在 C 中,有很多指针相关的概念,这些概念都很简单,但是都很重要。下面列出了 C 程序员必须清楚的一些与指针相关的重要概念:
| 概念 | 描述 |
|---|---|
| 指针的算术运算 | 可以对指针进行四种算术运算:++、--、+、- |
| 指针数组 | 可以定义用来存储指针的数组。 |
| 指向指针的指针 | C 允许指向指针的指针。 |
| 传递指针给函数 | 通过引用或地址传递参数,使传递的参数在调用函数中被改变。 |
| 从函数返回指针 | C 允许函数返回指针到局部变量、静态变量和动态内存分配。 |